1. Alejandro, G.-M., Jesús, H.-P., Hafiz, M. N. Iqbal, Marco, R.-P. Jorge, B. 2020. Bacteriophage-Based Vaccines: A Potent Approach for Antigen Delivery. Vaccines. 8, 504: 1-24.
2. André, F., Jonas, K., Sonja, W., Thomas, S., Michael, H. 2014. Construction of Human Antibody Gene Libraries and Selection of Antibodies by Phage Display. Michael Steinitz (ed.), Human Monoclonal Antibodies: Methods and Protocols, Methods in Molecular Biology, vol. 1060, DOI 10.1007/978-1-62703-586-6_12, © Springer Science + Business Media 2014.
3. Bao,P.W., Bing, X., Tian-Mo, W., Ya-Li, Z., Zhen-Shu, Z., Dian-Yuan, Z., Zhuo-Sheng, L. and Chun-Fang, G. 2001. Construction and selection of the natural immune Fab antibody phage display library from patients with colorectal cancer. World J Gastroenterol 7(6):811-815.
4. Bryce, N., Sachdev, S. S. 2012. Synthetic Antibody Libraries. Therapeutic Proteins: Methods and Protocols. DOI 10.1007/978-1-61779-921-1_2,. 27-41 .Chap:2.
5. Braunage, M. 2003. Construction of semisynthetic antibody libraries. Recomb Antib Cancer Ther. 207: 123-32.
6. Braunagel, M., Little, M. 1997. Construction of a semisynthetic antibody library using trinucleotide oligos. Nucleic Acids Research. 25(22): 4690–4691.
7. Carmela, D.B., Marcelo, Macedo B. and Andrea, Q. M. 2012. Antibody Phage Display Libraries: Contributions to oncology. Int J Mol Sci. 13, 5420-5440.
8. Eduardo, C. R., Lucas, B. C., Gabriela, P., Luciano, C. S., Gilvan, P. F., Jose, E. B. 2015. Phage display as a novel promising antivenom therapy: A review. Toxicon. 93, January: 79-84 .
9. Geir, Å. L., Inger, S. 2012. Next generation phage display by use of pVII and pIX as display scaffolds. Methods. 58(1): 40-46 10. Hammers, C. M., Stanley, J. R. 2014. Antibody Phage Display: Technique and Applications. J Invest Dermatol. 134(2): 1-13.
11. Hans, J.H., Nicole, V.N., Anneke, R., Simon, E.H., Rob, C.R., Paulla, H., Adriaan, P. B., Jan, W. A., and Hennie, R.H. 1999. A large non immunized human Fab fragment phage library that permits rapid isolation and kinetic analysis of high affinity antibodies. The Journal of biological chemistry , 274(26) June 25: 18218-18230.
12. James, K. T., Matthew, K. K., CDR Jacob, J. G., Yoon, Y. H. 2017. Application of phage display for the development of a novel inhibitor of PLA2 activity in Western cottonmouth venom. J Venom Res. 8: 19-24.
13. Janka, B., Ľubomíra, T., Peter, B., Peter, C. 2013. In vivo phage display — A discovery tool in molecular biomedicine. Biotechnology Advances. 31(8): 1247-1259.
14. Justyna, B., Ireneusz, C., Andrzej, G. 2012. Phage display—A powerful technique for immunotherapy. 1. Introduction and potential of therapeutic applications. Human Vaccines & Immunotherapeutics. 8 (12): 1816- 1828.
15. Justyna, B., Ireneusz, C. Andrzej, G. 2012. Phage display—A powerful technique for immunotherapy. 2. Vaccine delivery. Human Vaccines & Immunotherapeutics 8(12):1829–1835.
16. Jianming, G., Yanlin, W., Zhaoqi L., Zhiqiang W. 2010. Phage display and its application in vaccine design. Ann Microbiol. 60:13–19.
17. Jinye, L., Hongxia, S., Yanlin, T., Bin, Y., Lisheng, Q., Xiaoli, Y., Brian, C., Gengxi, H., Hiroshi,T. and Xunjia, C. (2006). Production of an anti-severe acute respiratory syndrome (SARS) coronavirus human monoclonal antibody Fab fragment by using a combinatorial immunoglobulin gene library derived from patients who recovered from SARS. Clinical and vaccine immunology. 13(5): 594–597.
18. Kadkhodazadeh, M., Rajabibazl, M., Motedayen, M. H., Shahidia, S., , Veisi Malekshahi, Z., Azam, R., Yarahmadi, M. 2020. Isolation of Polyclonal Single-Chain Fragment Variable (scFv) Antibodies Against Venomous Snakes of Iran and Evaluation of Their Capability in Neutralizing the Venom. Iranian Journal of Pharmaceutical Research.19 (3): 288-296 DOI: 10.22037/ijpr.2019.14400.12358 .
19. Kevin, J., Richard, G., Hardev, S. 2008. Viral therapy of cancer. New Jersey: Wiley online library.
20. Laustsen, A. H., , Gutierrez, J. M., Knudsen, C., Johansen, K. H., Bermúdez-Mendez, E., Cerni, F. A., Jürgensen, J. A., Ledsgaard, L., Martos-Esteban, A., Øhlenschlæger, M., Pus, U., Andersen, M.R., Lomonte, ., Engmark, M., Pucca, M. B. 2018. Pros and cons of different therapeutic antibody formats for recombinant antivenom development. Toxicon. 146, May: 151-175 .
21. Laustsen, A. H., Lauridsen, L. P., Lomonte, B., Andersen M.l R., Lohse, B. 2017. Pitfalls to avoid when using phage display for snake toxins. Toxicon. 126, February: 79-89.
22. Laustsen, A. H., Johansen, K. H., Engmark, M., Andersen, M. R. 2017. Recombinant snakebite antivenoms: A costcompetitive solution to a neglected tropical disease? PLOS Neglected Tropical Diseases. February 3: 1-14 .
23. Laustsen, A. H. 2016. Recombinant Antivenoms. Department of Drug Design and Pharmacology Faculty of Health and Medical Sciences University of Copenhagen Universitetsparken 2, DK-2100 Copenhagen, Denmark. andreas. Thesis.
24. Laustsen, A. H., Engmark, M., Milbo C., Johannesen,.J., Lomonted, B., Gutiérrez, J. M. Lohse,.B. 2016. From Fangs to Pharmacology: The Future of Snakebite Envenoming Therapy. Current Pharmaceutical Design. 22: 5270-5293.
25. Li, Y., Han, W.Y., Li, Z.J., Lei, L.C., 2009. Klebsiella pneumoniae MrkD adhesin-mediated immunity to respiratory infection and mapping the antigenic epitope by phage display library. Microb Pathog. 46:144-9.
26. Mohammadi, E., Shafiee, F., Shahzamani, K., Ranjbar, M.M., Alibakhshi, A., Ahangarzadeh, S., Beikmohammadi, L., Shariati, L., Hooshmandi, S., Ataei, B., Javanmard, S.H. 2021. Novel and emerging mutations of SARS-CoV-2: Biomedical implications. Biomedicine & Pharmacotherapy. Apr 23;139:111599. doi: 10.1016/j.biopha.2021.111599 .
27. Motedayen, M.H., Nikbakht, G.R., Rasaee, M.J., Zare Mirakabadi, A. 2015. Construction of a human recombinant polyclonal Fab fragment antibody library using peripheral blood lymphocytes of snake bitten victims. Archives of Razi Institute. 70(4): 255-261 28. Motedayen, M.H., 2015. Production of recombinant Fab fragment of polyclonal antibody against venom of poisonous snakes, using a phage display library technique and evaluation of its antivenom activity in Syrian laboratory mouse. University of Tehran, Faculty of Veterinary Medicine, Tehran, Iran, No: 499, Thesis.
29. Motedayen, M.H., Nikbakht Brojeni, G.H., Rasaee, M.J., Zare Mirakabadi, A., khorasani, A., Eizadi, H., Ranjbar, M.M., Azimi, S.M., Esmaelizad, M. 2018. Production of a Human Recombinant Polyclonal Fab Antivenom against Iranian Viper Echis carinatus. Archives of Razi Institute. 73(4): 287-294.
30. Omidfar, K., Daneshpour,M. 2015. Advances in phage display technology for drug discovery. Expert Opin Drug Discov.0: 1-19.
31. Nokhodian, Z., Ranjbar, M. M., Nasri, P., Kassaian, N., Shoaei, P., Vakili, B., Rostami, S., Ahangarzadeh, S., Alibakhshi, A., Yarian, F., Javanmard, S. H., & Ataei, B. 2020. Current status of COVID-19 pandemic; characteristics, diagnosis, prevention, and treatment. Journal of research in medical sciences. Official journal of Isfahan University of Medical Sciences. 25(3): 101. doi.org/10.4103/jrms.JRMS_476_20.
32. Rahbarizadeh, F., Rasaee, M.J., Frozandeh, M.M. and Allameh, A.A. (2003). Production of a recombinant VHH antibody against MUC1 with phage display method and determination of its characteristics. Thesis, Tarbiat Modarres University.
33. Rami, A., Behdani,. M., Yardehnavi, N., Habibi-Anbouhi, M., Kazemi,- Lomedasht,.F. 2017. An overview on application of phage display technique in immunological studies .Asian Pac J Trop Biomed. 7(7): 599–602.
34. Rakonjac, J. 2012. Filamentous bacteriophages: biology and applications. Chichester: eLS. John Wiley & Sons Ltd. http://dx.doi.org/ 10.1002/9780470015902.a0000777.
35. Rakonjac, J., Bennett, N.J., Spagnuolo, J., Gagic, D., Russel, M. 2011. Curr. Issues Mol. Biol. 13: 51–76.
36. Ranjbar, M.M., Ebrahimi, M.M., Shahsavandi, S., Farhadi, T., Mirjalili, A., Tebianian, M., Motedayen, M.H. 2019. Novel Applications of Immuno-bioinformatics in Vaccine and Bio-product Developments at Research Institutes. Archives of Razi Institute. 74 (3): 219-233.
37. Rodriguez, d. V., R.C., Schwartz, E.F., Possani, L.D., 2010. Mining on scorpion venom biodiversity. Toxicon. 56: 1155- 116.
38. Solomon, B. 2007. Active immunization against Alzheimer’s beta-amyloid peptide using phage display technology. Vaccine. 25:3053-6.
39. Vithayathil, R., Hooy, R.M., Cocco, M.J. Weiss, G.A. 2011. J Mol Biol. 414: 499– 510.
40. WHO, 2013. Animal Bites. World Health Organization, Geneva. Available in: http:// www.who.int/mediacentre/factsheets/fs373/en/.
41. Wu, C. H., Liu, I. J., Lu, R.M., Wu, H. C. 2016. Advancement and applications of peptide phage display technology in biomedical science. Journal of Biomedical Science. 23(8): 1-14.