بررسی اثر ضد قارچی نانوذرات دارویی آمفوتریسینB بر پایه تری متیل کیتوزان علیه قارچ کاندیدا آلبیکنس

نوع مقاله : مقاله کامل

نویسندگان

1 گروه پاتوبیولوژی ، قارچ شناسی دامپزشکی، دانشکده دامپزشکی، دانشگاه آزاد واحد علوم تحقیقات تهران ، ایران

2 بخش جانوران سمی و تولید پادزهر موسسه تحقیقات واکسن و سرم سازی رازی، سازمان تحقیقات، آموزش و ترویج کشاورزی،تهران، ایران

3 بخش تولید توبرکولین و مالئین موسسه تحقیقات واکسن و سرم سازی رازی، سازمان تحقیقات، آموزش و ترویج کشاورزی،تهران، ایران

چکیده

امروزه پیشرفت‌های اخیر در سیستم تحویل دارویی منجر به رفع معایب دارورسانی قدیم و افزایش چشمگیر تحویل دارو به بافت هدف شده و به همراه آن دوز درمانی، سمیت و عوارض جانبی کاهش یافته است. هدف از این مطالعه ارزیابی حساسیت ضد قارچی آمفوتریسین B بارگزاری شده در نانوذرات تری متیل کیتوزان و تری پلی فسفات سدیم در مقایسه با شکل سنتی دارو است. مطالعه بر روی ایزوله‌های مقاوم و حساس کاندیدا آلبیکنس با روش میکرودایلوشن براث مطابق پروتکل CLSA-A3 و همچنین بررسی متابولیکی تکثیر سلولی صورت گرفته است. نتایج این تحقیق نشان داد که حداقل غلظت مهاری (MIC90) نانوذرات آمفوتریسین B و شکل سنتی دارو 25/0 و 75/0 و حداقل غلظت کشندگی (MFC) 5/0 و 1 میکروگرم در میلی‌لیتر برای ایزوله‌های حساس می‌باشد. MIC90 برای ایزوله مقاوم نیز به ترتیب 8 و 32 و MFC به ترتیب 32 و 64 میکروگرم در میلی‌لیتر بود (05/0>p)،(001/0>p). همچنین نانوذرات و شکل سنتی دارو با آزمون مسیر متابولیکی در ایزوله حساس به ترتیب میزان 90 و 72 درصد و در ایزوله مقاوم 73 و 51 درصد منجر به مهار رشد قارچ در مقایسه با شاهد شدند. نتایج این تحقیق بیان می‌کند نانوذرات آمفوتریسین B به‌عنوان یک ضد قارچ مؤثر، پتانسیل بسیار بالاتری نسبت به شکل سنتی داشته و همچنین در نتیجه آهسته رهش‌شدن، منجر به تحویل مداوم آنتی‌بیوتیک هنگام درمان می شود. 

کلیدواژه‌ها


عنوان مقاله [English]

Antifungal activity of Amphotericin B-Loaded N, N, N-Trimethyl Chitosan Nanoparticles against Candida albicans

نویسندگان [English]

  • L. Nemati SHizari 1
  • M. Bayat 1
  • N. Mohamadpour Dounighi 2
  • N. Mosavari 3
1 Department pathobiology faculty of veterinary specialized science. science and research branch.islamic azad university,tehran,iran
2 Department of Human Vaccine and Serum, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization, Karaj, Iran
3 Department of Tuberculosis, Razi Vaccine & Serum Research Institute, Agricultural Research, Education and Extension Organization, Karaj, Iran
چکیده [English]

Recent advancements in drug delivery system through development of nanomedicine has significantly improved the delivery of the medicine to the target tissue, consequently reduced the required therapeutic dose, toxicity and side effects. The aim of this study was test antifungal susceptibility of trimethylchitosan nanoparticles in combination with amphotericin B (NPs-AmB) through broth micro-dilution method described in CLSA-A3 guidelines on resistant (R) and susceptible (S) Candida albicans isolates and the cell viability and proliferation assays. Minimum inhibitory concentrations (MICs) 90 % of NPs-AmB and AmB determined to be 0.25 and 0.75 µg/mL, and minimum fungicidal concentration (MFC) were 0.5 and 1 µg/mL for S-isolate. MIC 90 for R-isolate were 8 and 32 µg/mL and MFC were 32 and 64 µg/mL respectively demonstrating a significant improvement in antifungal activity (p

کلیدواژه‌ها [English]

  • Amphotericin B
  • Nanoparticles
  • Candida albicans
  • Microdilution Broth
  • Trimethyl chitosan
1- AltinbaŞ, R., A. BariŞ, S. Şen, R. Öztürk and N. J. T. J. o. M. S. Kİraz. 2020. Comparison of the Sensititre YeastOne antifungal method with the CLSI M27-A3 reference method to determine the activity of antifungal agents against clinical isolates of Candida spp. 50: 2024-2031.
2- Bajpai, V. K., I. Khan, S. Shukla, P. Kumar, I. A. Rather, Y.-H. Park, Y. S. Huh, Y.-K. J. B. Han and B. Engineering. 2019. Invasive fungal infections and their epidemiology: measures in the clinical scenario. Biotechnology and Bioprocess Engineering 24: 436–444.
3- Beg, S., W. H. Almalki, A. Malik, M. Farhan, M. Aatif, K. S. Alharbi, N. K. Alruwaili, M. Alrobaian, M. Tarique and M. J. D. D. T. Rahman. 2020. 3D printing for drug delivery and biomedical applications. Drug Discovery Today 25: 1668-1681.
4 - Boswell, G., D. Buell and I. Bekersky. 1998. AmBisome (liposomal amphotericin B): a comparative review. The Journal of Clinical Pharmacology 38: 583-592.
5- Canela, H. M. S., B. Cardoso, L. H. Vitali, H. C. Coelho, R. Martinez and M. E. d. S. J. M. Ferreira. 2018. Prevalence, virulence factors and antifungal susceptibility of Candida spp. isolated from bloodstream infections in a tertiary care hospital in Brazil. Mycoses 61: 11-21.
6- Chávez-Fumagalli, M. A., T. G. Ribeiro, R. O. Castilho, S. O. A. Fernandes, V. N. Cardoso, C. S. P. Coelho, D. V. C. Mendonça, M. Soto, C. A. P. Tavares and A. A. G. Faraco. 2015. New delivery systems for amphotericin B applied to the improvement of leishmaniasis treatment. Revista da Sociedade Brasileira de Medicina Tropical 48: 235-242.
7- Espinel-Ingroff, A., F. Barchiesi, M. Cuenca-Estrella, M. Pfaller, M. Rinaldi, J. Rodriguez-Tudela and P. Verweij. 2005. International and multicenter comparison of EUCAST and CLSI M27-A2 broth microdilution methods for testing susceptibilities of Candida spp. to fluconazole, itraconazole, posaconazole, and voriconazole. Journal of clinical microbiology 43: 3884-3889.
8 - Farhan, M. A., A. M. Moharram, T. Salah and O. M. J. M. m. Shaaban. 2019. Types of yeasts that cause vulvovaginal candidiasis in chronic users of corticosteroids. Medical Mycology 57: 681-687.
9 - Farooqi, A. A., N. N. Desai, M. Z. Qureshi, D. R. N. Librelotto, M. L. Gasparri, A. Bishayee, S. M. Nabavi, V. Curti and M. J. B. a. Daglia. 2018. Exosome biogenesis, bioactivities and functions as new delivery systems of natural compounds. Biotechnology Advances 36: 328-334.
10- Halbandge, S. D., S. P. Mortale and S. M. J. T. O. N. J. Karuppayil. 2017. Biofabricated silver nanoparticles synergistically activate amphotericin B against mature biofilm forms of Candida albicans. The Open Nanomedicine Journal 4: 1-16.
11- Hamill, R. J. 2013. Amphotericin B formulations: a comparative review of efficacy and toxicity. Drugs 73: 919-934.
12- Lanza, J. S., S. Pomel, P. M. Loiseau and F. J. E. o. o. d. d. Frézard. 2019. Recent advances in amphotericin B delivery strategies for the treatment of leishmaniases. Expert Opinion on Drug Delivery 16: 1063-1079.
13- Lotfali, E., A. R. Shahverdi, R. Mohammadi, F. Noorbakhsh, A. Ghajari, S. Ansari and S. J. A. o. C. I. D. Rezaie. 2017. In Vitro Activity of Two Nanoparticles on Clinical Isolates of Candida parapsilosis, Showing Resistance Against Antifungal Agents in Children. Archives of clinical infectious DIS 12: e13853.
14 - Lovero, G., O. De Giglio, S. Rutigliano, G. Diella, G. Caggiano and M. T. J. J. o. m. m. Montagna. 2017. In vitro antifungal susceptibilities of Candida species to liposomal amphotericin B, determined using CLSI broth microdilution, and amphotericin B deoxycholate, measured using the Etest. J Med Microbiol 66: 213-216.
15- Marena, G. D., M. A. d. S. Ramos, T. M. Bauab and M. J. C. R. i. A. C. Chorilli. 2020. A critical review of analytical methods for quantification of amphotericin B in biological samples and pharmaceutical formulations. Critical Reviews in Analytical Chemistry 21: 1-22.
16- Moghimi, R., A. Aliahmadi and H. J. U. s. Rafati. 2017. Ultrasonic nanoemulsification of food grade trans-cinnamaldehyde: 1, 8-Cineol and investigation of the mechanism of antibacterial activity. Ultrasonics Sonochemistry 35: 415-421.
17- Morris, A. J., K. Rogers, W. P. McKinney, S. A. Roberts and J. T. Freeman. 2018. Antifungal susceptibility testing results of New Zealand yeast isolates, 2001–2015: Impact of recent CLSI breakpoints and epidemiological cut-off values for Candida and other yeast species. Journal of global antimicrobial resistance 14: 72-77.
18- Nemati Shizari, L., N. Mohammadpour Dounighi, M. Bayat and N. Mosavari. 2020. A New Amphotericin B-loaded Trimethyl Chitosan Nanoparticles as a Drug Delivery System and Antifungal Activity on Candida albicans Biofilm. Archives of Razi Institute 76: 2021.
19- Palmeira-de-Oliveira, R., A. Palmeira-de-Oliveira, C. Gaspar, S. Silvestre, J. Martinez-de-Oliveira, M. Amaral and L. J. I. j. o. p. Breitenfeld. 2011. Sodium Tripolyphosphate: An excipient with intrinsic in vitro anti-Candida activity. International Journal of Pharmaceutics 421: 130-134.
20- Sanchez, D. A., D. Schairer, C. Tuckman-Vernon, J. Chouake, A. Kutner, J. Makdisi, J. M. Friedman, J. D. Nosanchuk and A. J. Friedman. 2014. Amphotericin B releasing nanoparticle topical treatment of Candida spp. in the setting of a burn wound. Nanomedicine: Nanotechnology, Biology and Medicine 10: 269-277.
21- Silva-Carvalho, R., J. Fidalgo, K. Melo, M. Queiroz, S. Leal, H. Rocha, T. Cruz, P. Parpot, A. Tomás and M. Gama. 2020. Development of dextrin-amphotericin B formulations for the treatment of Leishmaniasis. International Journal of Biological Macromolecules 153: 276-288.
22- Takemoto, M. and J. K. Liao. 2001. Pleiotropic effects of 3-hydroxy-3-methylglutaryl coenzyme a reductase inhibitors. Arteriosclerosis, thrombosis,vascular biology 21: 1712-1719.
23- Waelchli, R., M. Känzig, A. Gygax, L. Corboz and P. Rüsch. 1993. The relationship between cycle stage and results of uterine culture in the mare. Journal of Veterinary Medicine Series 40: 569-575.
24- Xu, J., B. Xu, D. Shou, X. Xia and Y. J. P. Hu. 2015. Preparation and evaluation of vancomycin-loaded N-trimethyl chitosan nanoparticles. Polymers 7: 1850-1870.
25- Yien, L., N. M. Zin, A. Sarwar and H. Katas. 2012. Antifungal activity of chitosan nanoparticles and correlation with their physical properties. International journal of Biomaterials 2012: 1-9.
26- Zia, Q., O. Mohammad, M. A. Rauf, W. Khan and S. Zubair. 2017. Biomimetically engineered Amphotericin B nano-aggregates circumvent toxicity constraints and treat systemic fungal infection in experimental animals. Scientific reports 7: 1-19.