داکینگ مولکولی پپتید 36 CLF با آنتی‌ژن‌های سطحی ویروس آنفلوانزای طیور تحت تیپ H5N8

نوع مقاله : مقاله کامل

نویسندگان

1 گروه علوم دامی، دانشگاه فردوسی مشهد،مشهد،ایران

2 گروه علوم دامی، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران

3 گروه علوم دامی، دانشکده کشاورزی، دانشگاه فردوسی مشهد،مشهد،ایران

چکیده

H5N8 از جمله تحت تیپ‌های ویروس آنفلوانزای طیور در ایران است که علاوه بر خسارات در این صنعت می‌تواند انسان را نیز درگیر کند. از جمله مشکلات در ارتباط با ویروس آنفلوآنزا می‌توان به افزایش مقاومت سویه‌های در حال گردش این ویروس نسبت به مهارکننده‌های ضدویروسی کنونی است که شناسایی مواد ضدویروسی جدید را الزامی می‌سازد. از جمله این ترکیبات می‌توان به پپتید ضدویروسی CLF36 اشاره کرد که حاصل اتصال دو پپتید از پروتئین لاکتوفرین شتری (کایمر لاکتوفرین شتری) می‌باشد که بعضا فعالیت ضدمیکروبی بیشتری را نسبت سایر گونه‌ها نظیر گاو نشان داده است. هدف از این پژوهش بررسی برهمکنش پپتید CLF36 با آنتی‌ژن‌های ویروس آنفلوانزای طیور تحت تیپ H5N8 از طریق داکینگ مولکولی می‌باشد. خواص فیزیکوشیمیایی پپتید CLF36 با استفاده از نرم‌افزار CLC Main Workbench 5 بررسی و سپس ساختار سوم این پپتید و آنتی‌ژن‌های سطحی ویروس از طریق نرم‌افزار I-TASSER و Swiss-Model پیش‌بینی شدند. در ادامه، برهمکنش‌های پپتید CLF36 با آنتی‌ژن‌های‌ سطحی با استفاده از نرم‌افزار آنلاینClusPro2.0 و تصحیح ساختارها از طریق نرم‌افزار YASARA Energy Minimization صورت گرفت. میزان صحت ساختارها از طریق نرم افزار SAVES v5.0 مورد ارزیابی قرار گرفتند. در پایان نتایج داکینگ با استفاده از نرم‌افزار PYMOL بررسی شدند. نتایج داکینگ مولکولی نشان داد که انرژی موقعیت اتصال برای آنتی‌ژن‌های هماگلوتنین (HA)، نورآمینیداز (NA) و پروتئین ماتریکس 2 (M2) به ترتیب -674.2، -573.4، -567.0 می‌باشد. بیشترین اسیدآمینه‌های درگیر در اتصالات هیدروژنی برای هر سه آنتی‌ژن مربوط به اسیدآمینه‌های لیزین و آرژینین بود. همچنین نتایج حاکی از آن بود که پپتید به جایگاه فعال مربوط به دو آنتی ژن HA و NA متصل نشده است؛ در حالیکه این پپتید به جایگاه M2e از M2 متصل شده است که این ناحیه غنی از اپی‌توپ می‌باشد. اسیدآمینه‌های پرولین 10 و گلوتامیک اسید هشت مربوط به ناحیه‌ی M2e می‌باشد که به ترتیب با اسیدآمینه‌های آرژینین 27 و 22 از پپتید CLF36 پیوند هیدروژنی برقرار کرده‌اند. با توجه به نتایج حاصل از این مطالعه امید است در آینده بتوان از اینگونه پپتیدها برای درمان آنفلوانزای طیور با حداقل عوارض جانبی استفاده کرد.   

کلیدواژه‌ها


عنوان مقاله [English]

Molecular docking CLF36 peptide against avian influenza virus subtype H5N8 antigenes

نویسندگان [English]

  • A Sahebnazar 1
  • M Tahmoorepur 2
  • M.H Sekhavati 3
1 Animal Science Department, Ferdowsi University of Mashhad, Mashhad, Iran
2 Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
3 Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
چکیده [English]

H5N8 is one of the subtypes of highly pathogenic avian influenza in Iran that could cause damage to birds in addition humans. Among combat existing and emerging drug-resistant influenza viruses, new antiviral drugs as alternative played pivotal roles. It can mention the CLF36 antiviral peptide, which is the result of the binding of two peptides from the camel lactoferrin protein (chimera) has shown more antimicrobial activity than other species such as blf. The objective of this study was to predicte the structure of CLF36 peptide and two surface antigens of influenza virus as well as the interaction of this peptide with three antigens of nfluenza a virus subtype H5N8 through molecular docking. The physicochemical properties of CLF36 peptide were evaluated by using CLC Main Workbench 5 software. The third structure of this peptide as well as virus antigens were determined through I-TASSER and Swiss-Model softwares. After that, The CLF36 peptide interacts with these antigenes were performed by using the online software ClusPro2.0 and were corrected these structures through the YASARA Energy Minimization software. The quality of the 3D model was evaluated by the SAVES v5.0 software. Finally, the docking results were studied by using PYMOL software. Molecular docking results showed that the position and energy of bonding assessment forhemagglutinin, neuraminidase and Matrix protein 2 were -674.2, -573.4 and -567.0 respectively. Most of peptide’s amino acids involved in hydrogen bonds for all three antigens were lysine and arginine residues. Although analysis of the binding sites showed that CLF36 were not binding to the active site of HA and NA antigens, this peptide is attached to the M2e site in M2 protein. The proline 10 and glutamic acid 8 amino acides belongs to the M2e region, which has hydrogen bonds with the amino acids arginine 27 and 22 of the CLF36 peptide, respectively. It is hoped that these peptide can be treatment for avian influenza in the future. 

کلیدواژه‌ها [English]

  • H5N8
  • CLF36
  • Molecular docking
  • hemagglutinin
  • Neuraminidase
  • Matrix protein 2
1.Ammendolia, M. G., Agamennone, M., Pietrantoni, A., Lannutti, F., Siciliano, R. A., De Giulio, B., ... & Superti, F. 2012. Bovine lactoferrin-derived peptides as novel broad-spectrum inhibitors of influenza virus. Pathogens and global health, 106(1), 12-19. 29
2.Anderson, T., I. Capua, G. Dauphin, R. Donis, R. Fouchier, E. Mumford, M. Peiris, D. Swayne and A. Thiermann. 2010. FAO-OIE-WHO Joint Technical Consultation on Avian Influenza at the Human-Animal Interface. Influenza and other respiratory viruses 4: 1-29.
3.Azzarito, V., K. Long, N.S. Murphy and A.J. Wilson. 2013. Inhibition of α-helix-mediated protein–protein interactions using designed molecules. Nature chemistry 5(3): 161-173. 
4.Beato, M.S., M. Mancin, J. Yang, A. Buratin, M. Ruffa, S. Maniero, A. Fusaro, c. Terregino, X.F. Wan and I. Capua. 2013. Antigenic characterization of recent H5N1 highly pathogenic avian influenza viruses circulating in Egyptian poultry. Virology 435(2): 350-356.
5.Beerens, N., R. Heutink, S.A. Bergervoet, F. Harders, A. Bossers, and G. Koch. 2017. Multiple reassorted viruses as cause of highly pathogenic avian influenza A (H5N8) virus epidemic, the Netherlands, 2016. Emerging infectious diseases 23(12): 1974.
6.Bolscher, J. G.,  R. Adão, K. Nazmi, P.A. van den Keybus, W. van’t Hof, A.V.N. Amerongen, and E.C. Veerman. 2009. Bactericidal activity of LFchimera is stronger and less sensitive to ionic strength than its constituent lactoferricin and lactoferrampin peptides. Biochimie 91(1): 123-132.
7.Bolscher, J., K. Nazmi, J. van Marle, W. van ‘t Hof  and E. Veerman. 2012. Chimerization of lactoferricin and lactoferrampin peptides strongly potentiates the killing activity against Candida albicans. Biochemistry and Cell Biology 90(3): 378-388.
8.Chaudhary, K. K., and Mishra, N. 2016. A review on molecular docking: novel tool for drug discovery. databases, 3(4).28
9.Flores-Villaseñor, H., A. Canizalez-Román, M. de la Garza, K. Nazmi, J.G. Bolscher and N. Leon-Sicairos. 2012. Lactoferrin and lactoferrin chimera inhibit damage caused by enteropathogenic Escherichia coli in HEp-2 cells. Biochimie 94(9): 1935-1942.
10.Flores-Villaseñor, H., A. Canizalez-Román, M. Reyes-Lopez, K. Nazmi, M. de la Garza, J. Zazueta-Beltrán, and J. G. Bolscher. 2010. Bactericidal effect of bovine lactoferrin, LFcin, LFampin and LFchimera on antibiotic-resistant Staphylococcus aureus and Escherichia coli. Biometals 23(3): 569-578.
11.Hadley, B. E., and R. E.W Hancock. 2010. Strategies for the discovery and advancement of novel cationic antimicrobial peptides. Current topics in medicinal chemistry 10(18): 1872-1881.
12.Hancock, R. E. and G. Diamond. 2000. The role of cationic antimicrobial peptides in innate host defences. Trends in microbiology, 8(9): 402-410.
13.Jenssen, H., J.H. Andersen, D. Mantzilas, and T.J. Gutteberg. 2004. A wide range of medium-sized, highly cationic, α-helical peptides show antiviral activity against herpes simplex virus. Antiviral research 64(2): 119-126.
14.Leon-Sicairos, N., A. Canizalez-Roman, M. de la Garza, M. Reyes-Lopez, J. Zazueta-Beltran, K. Nazmi, and J.G. Bolscher. 2009. Bactericidal effect of lactoferrin and lactoferrin chimera against halophilic Vibrio parahaemolyticus. Biochimie 91(1): 133-140.
15.Li, F., C. Ma and J. Wang. 2015. Inhibitors targeting the influenza virus hemagglutinin. Current medicinal chemistry, 22(11): 1361-1382.
16.Li, J., Chen, Y., Yuan, N., Zeng, M., Zhao, Y., Yu, R., ... & Dong, S. 2018. A novel natural influenza A H1N1 virus neuraminidase inhibitory peptide derived from cod skin hydrolysates and its antiviral mechanism. Marine drugs, 16(10), 377.30
17.Lupiani, B. and S.M. Reddy. 2009. The history of avian influenza. Comparative Immunology, Microbiology and Infectious Diseases, 32(4): 311-323.
18.McAuley, J. L., B.P. Gilbertson, S. Trifkovic, L.E. Brown and J.L. McKimm-Breschkin. 2019. Influenza virus neuraminidase structure and functions. Frontiers in microbiology, 10: 39.
19.Mezhenskaya, D., I. Isakova-Sivak and L. Rudenko. 2019. M2e-based universal influenza vaccines: a historical overview and new approaches to development. Journal of biomedical science, 26(1): 76.
20.Redwan, E. M., E .M. EL-Fakharany, V. N. Uversky and M. H. Linjawi. 2014. Screening the anti infectivity potentials of native N-and C-lobes derived from the camel lactoferrin against hepatitis C virus. BMC complementary and alternative medicine, 14(1): 219.
21.Reyes-Cortes, R., E. Acosta-Smith, R. Mondragón-Flores, K. Nazmi, J. G. Bolscher, A. Canizalez-Roman, and N. Leon-Sicairos. 2017. Antibacterial and cell penetrating effects of LFcin17–30, LFampin265–284, and LF chimera on enteroaggregative Escherichia coli. Biochemistry and Cell Biology, 95(1): 76-81.
22.Russell, R. J., L. F. Haire, D. J. Stevens, P. J. Collins, Y. P. Lin, G. M. Blackburn and J. J. Skehel. 2006. The structure of H5N1 avian influenza neuraminidase suggests new opportunities for drug design. Nature, 443(7107): 45-49.
23.Sabokkhiz, M. A., A. Tanhaeian and M. Mamarabadi. 2019. Study on Antiviral Activity of Two Recombinant Antimicrobial Peptides Against Tobacco Mosaic Virus. Probiotics and antimicrobial proteins, 11(4): 1370-1378.
24.Scala, M. C., Sala, M., Pietrantoni, A., Spensiero, A., Di Micco, S., Agamennone, M., ... & Superti, F. 2017. Lactoferrin-derived peptides active towards influenza: identification of three potent tetrapeptide inhibitors. Scientific reports, 7(1), 1-11.31
25.Shafer, W. M., F. Hubalek, M. Huang and J. Pohl. 1996. Bactericidal activity of a synthetic peptide (CG 117-136) of human lysosomal cathepsin G is dependent on arginine content. Infection and immunity, 64(11): 4842-4845.
26.Skalickova, S., Z. Heger, L. Krejcova, V. Pekarik, K. Bastl, J. Janda and R. Kizek. 2015. Perspective of use of antiviral peptides against influenza virus. Viruses, 7(10): 5428-5442.
27.Tahmoorespur, M., M. Azghandi, A. Javadmanesh, Z. Meshkat and M. H. Sekhavati. 2019. A novel chimeric anti-HCV peptide derived from camel lactoferrin and molecular level insight on its interaction with E2. International Journal of Peptide Research and Therapeutics, 1-13.
28.Tang, Z., Y. Yin, Y. Zhang, R. Huang, Z. Sun, T. Li and Q. Tu. 2008. Effects of dietary supplementation with an expressed fusion peptide bovine lactoferricin–lactoferrampin on performance, immune function and intestinal mucosal morphology in piglets weaned at age 21 d. British Journal of Nutrition, 101(7): 998-1005.
29.Ward, C. W., P.A. Gleeson and T. A. Dopheide. 1980. Carbohydrate composition of the oligosaccharide units of the haemagglutinin from the Hong Kong influenza virus A/Memphis/102/72. Biochemical Journal, 189(3): 649-652.
30.Worch, R., A. Dudek, J. Krupa, A. Szymaniec and P. Setny. 2018. Charged N-terminus of influenza fusion peptide facilitates membrane fusion. International journal of molecular sciences, 19(2): 578.
31.Yang, H., P. J. Carney, V. P. Mishin, Z. Guo, J. C. Chang, D. E. Wentworth and J. Stevens. 2016. Molecular characterizations of surface proteins hemagglutinin and neuraminidase from recent H5Nx avian influenza viruses. Journal of virology, 90(12):5770-5784.