توسعه و یافتن الیگونوکلئوتیدها برای مارکرهای گلبول قرمز تیپ B با هدف کاربرد در انتقال دارویی

نوع مقاله : مقاله کامل

نویسندگان

1 گروه پاتوبیولوژی، دانشکده دامپزشکی دانشگاه فردوسی مشهد، مشهد، ایران

2 پژوهشکده بیوتکنولوژی، دانشکده دامپزشکی دانشگاه فردوسی مشهد، مشهد، ایران

3 مرکز تحقیقات ایمونولوژی، پژوهشکده علوم پایه، دانشگاه علوم پزشکی مشهد، مشهد، ایران

4 مرکز ژنومیکس مقایسهای، دانشگاه مرداک، پرت 0116 ، استرالیا

چکیده

آپتامرها با جنسی از الیگونوکلئوتید به دلیل توانایی در اتصال به اهداف مختلف با اختصاصیت و ویژگی بسیار بالا، می‌توانند برای انتقال دارو بصورت اختصاصی به ملکول هدف به کار گرفته شوند. پاکسازی سریع کلیوی داروهای بر پایه نوکلئیک‌اسید که توسط عروق خونی منتقل می‌شوند، یکی از مشکلات اساسی برای انتقال این گونه داروها توسط سیستم قلبی عروقی می‌باشد. برای حل این مسئله در این مطالعه یافتن و توسعه آپتامر برای گلبول‌های قرمز خون مبنا قرار گرفت زیرا گلبول‌های قرمز به راحتی در طول سیستم قلبی و عروقی جابجا می‌شوند. گلبول‌های قرمز با دارا بودن ویژگی‌های خاص، گزینه بسیار مناسبی به عنوان انتقال‌دهنده فیزیولوژیک داروها در بدن می‌باشند. بدین منظور با استفاده از گلبول‌های قرمز و هدف قرار دادن 4-O-((2-O-(β-D-fucopyranosyl)-3-O-(α-D-galactopyranosyl))-β-galactopyranosyl)-2-acetamido-2-deoxy-α-D-glucopyranoside در سطح گلبول قرمز سلکس سلولی (Cell-SELEX) انجام شد. بعد از 15 دور از سلکس، با سکانس کردن محصول نهایی، آپتامرهای RNV544 و RNV543 شناسایی گردید که گزینه‌های مناسبی برای هدف قرار دادن گلبول‌های قرمز می‌باشند. میزان اتصال با استفاده از فلوسایتومتری برای RNV544 و RNV543 تایید شد. نتیجه این مطالعه یافتن آپتامرهایی بود که توانایی اتصال اختصاصی به گلبول‌های قرمز تیپ B را دارند.

کلیدواژه‌ها


عنوان مقاله [English]

Development of novel oligonucleotides targeting erythrocyte type B markers for drug delivery applications

نویسندگان [English]

  • K Rahimizadeh 1
  • Gh. Hashemitabar 1
  • M Basami 2
  • A Haghparast 1
  • M Sankian 3
  • R. N. Veedu 4
1 Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
2 Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
3 Immunobiochemistry laboratory, Immunology Research Center, Bu-Ali Research Institute, Mashhad, Iran
4 Center for Comparative Genomics, Murdoch University, Perth 6150, Australia
چکیده [English]

Nucleic acid aptamers have been emerged as potential molecules for target-specific drug delivery because of their ability to bind targets with very high affinity and specificity. Rapid renal clearance is one of the major issues associated with the vascular delivery of nucleic acid-based drugs. To circumvent this problem, this study was designed to envision the development of nucleic acid aptamers specific to human erythrocyte as erythrocytes travel through the cardiovascular system. Erythrocytes have special properties which make them peculiar and specific as a physiological carrier for drug delivery For this purpose, we have performed Cell-SELEX procedure using human erythrocytes containing 4-O-((2-O-(β-D-fucopyranosyl)-3-O-(α-D-galactopyranosyl))-β-galactopyranosyl)-2-acetamido-2-deoxy-α-D-glucopyranoside on the surface as a model target. After completing 15 rounds of selection, sequencing of the product identified RNV543 and RNV544 as potential oligonucleotides specific to the target human erythrocyte. The binding affinity of both RNV543 and RNV544 was confirmed by flowcytometry. This study showed there is Aptamers which can have specific binding to erythrocyte type B.

کلیدواژه‌ها [English]

  • Functional nucleic acids
  • Cell-SELEX
  • oligonucleotides
  • erythrocyte
  • drug deliver
1- Aaldering, L. J., H. Tayeb, S. Krishnan, S. Fletcher, S. D. Wilton and R. N. Veedu. 2015. Smart functional nucleic acid chimeras: enabling tissue specific RNA targeting therapy. RNA biology 12: 412-425.
2- Birch, C. M., H. W. Hou, J. Han and J. C. Niles. 2015. Identification of malaria parasite-infected red blood cell surface aptamers by inertial microfluidic SELEX (I-SELEX). Scientific reports 5: 11347.
3- Chakravarthy, M., M. T. Aung-Htut, B. T. Le and R. N. Veedu. 2017. Novel Chemically-modified DNAzyme targeting Integrin alpha-4 RNA transcript as a potential molecule to reduce inflammation in multiple sclerosis. Scientific reports 7: 1613.
4- Chen, M., Y. Yu, F. Jiang, J. Zhou, Y. Li, C. Liang, L. Dang, A. Lu and G. Zhang. 2016. Development of cell-SELEX technology and its application in cancer diagnosis and therapy. International journal of molecular sciences 17: 2079.
5- Chen, Z., Z. Ali, S. Li, B. Liu and N. He. 2016. Aptamers generated from cell-systematic evolution of ligands through exponential enrichment and their applications. Journal of Nanoscience and Nanotechnology 16: 9346-9358.
6- Cooling, L. 2015. Blood groups in infection and host susceptibility. Clinical microbiology reviews 28: 801-870.
7- Dastjerdi, K., G. H. Tabar, H. Dehghani and A. Haghparast. 2011. Generation of an enriched pool of DNA aptamers for an HER2‐overexpressing cell line selected by Cell SELEX. Biotechnology and applied biochemistry 58: 226-230.
8- Dean, L.  Blood Groups and Red Cell Antigens [Internet]. Bethesda (MD): National Center for Biotechnology Information (US); 2005. Chapter 2, Blood group antigens are surface markers on the red blood cell membrane.
9- Famulok, M., J. S. Hartig and G. Mayer. 2007. Functional aptamers and aptazymes in biotechnology, diagnostics, and therapy. Chemical reviews 107: 3715-3743.
10- Gopinath, S. C. B. 2007. Methods developed for SELEX. Analytical and bioanalytical chemistry 387: 171-182.
11- http://www.marketsandmarkets.com/PressReleases/aptamerstechnology.asp and 2014. MarketsandMarkets,.
12- Hung, L.-Y., C.-H. Wang, K.-F. Hsu, C.-Y. Chou and G.-B. Lee. 2014. An on-chip Cell-SELEX process for automatic selection of high-affinity aptamers specific to different histologically classified ovarian cancer cells. Lab on a Chip 14: 4017-4028.
13- Jayasena, S. D. 1999. Aptamers: an emerging class of molecules that rival antibodies in diagnostics. Clinical chemistry 45: 1628-1650.
14- Keefe, A. D., S. Pai and A. Ellington. 2010. Aptamers as therapeutics. Nature reviews Drug discovery 9: 537.
15- Kourlas, H. and D. S. Schiller. 2006. Pegaptanib sodium for the treatment of neovascular age-related macular degeneration: a review. Clinical therapeutics 28: 36-44.
16- Li, W.-M., T. Bing, J.-Y. Wei, Z.-Z. Chen, D.-H. Shangguan and J. Fang. 2014. Cell-SELEX-based selection of aptamers that recognize distinct targets on metastatic colorectal cancer cells. Biomaterials 35: 6998-7007.
17- Lipi, F., S. Chen, M. Chakravarthy, S. Rakesh and R. N. Veedu. 2016. In vitro evolution of chemically-modified nucleic acid aptamers: Pros and cons, and comprehensive selection strategies. RNA biology 13: 1232-1245.
18- Lundin, K. E., O. Gissberg and C. E. Smith. 2015. Oligonucleotide therapies: the past and the present. Human gene therapy 26: 475-485.
19- Mitra, R., N. Mishra and G. P. Rath. 2014. Blood groups systems. Indian journal of anaesthesia 58: 524.
20- Morris, K. N., K. B. Jensen, C. M. Julin, M. Weil and L. Gold. 1998. High affinity ligands from in vitro selection: complex targets. Proceedings of the National Academy of Sciences 95: 2902-2907.
21- N.Veedu, R. 2015. Editorial Medicinal Chemistry of Aptamers. Current Topics in Medicinal Chemistry 15.
22- Nimjee, S. M., C. P. Rusconi and B. A. Sullenger. 2005. Aptamers: an emerging class of therapeutics. Annu Rev Med 56: 555-583.
23- Ohno, Y., K. Maehashi and K. Matsumoto. 2010. Label-free biosensors based on aptamer-modified graphene field-effect transistors. Journal of the American Chemical Society 132: 18012-18013.
24- R Kanwar, J., K. Roy, N. G Maremanda, K. Subramanian, R. N Veedu, R. Bawa and R. K Kanwar. 2015. Nucleic acid-based aptamers: applications, development and clinical trials. Current medicinal chemistry 22: 2539-2557.
25- Rahimizadeh, K., H. AlShamaileh, M. Fratini, M. Chakravarthy, M. Stephen, S. Shigdar and R. N. Veedu. 2017. Development of Cell-Specific aptamers: Recent advances and insight into the selection procedures. Molecules 22: 2070.
26- Rossi, L., S. Serafini, F. Pierigé, A. Antonelli, A. Cerasi, A. Fraternale, L. Chiarantini and M. Magnani. 2005. Erythrocyte-based drug delivery. Expert opinion on drug delivery 2: 311-322.
27- Sefah, K., Z. Tang, D. Shangguan, H. Chen, D. Lopez-Colon, Y. Li, P. Parekh, J. Martin, L. Meng and J. Phillips. 2009. Molecular recognition of acute myeloidleukemia using aptamers. Leukemia 23: 235.
28- Souza, A. G., K. Marangoni, P. T. Fujimura, P. T. Alves, M. J. Silva, V. A. F. Bastos, L. R. Goulart and V. A. Goulart. 2016. 3D Cell-SELEX: Development of RNA aptamers as molecular probes for PC-3 tumor cell line. Experimental cell research 341: 147-156.
29- Stoltenburg, R., C. Reinemann and B. Strehlitz. 2007. SELEX—a (r) evolutionary method to generate high-affinity nucleic acid ligands. Biomolecular engineering 24: 381-403.
30- Storry, J. and M. L. Olsson. 2009. The ABO blood group system revisited: a review and update. Immunohematology 25: 48.
31- Thiel, W. H., K. W. Thiel, K. S. Flenker, T. Bair, A. J. Dupuy, J. O. McNamara, F. J. Miller and P. H. Giangrande. Section. 2015. Cell-internalization SELEX: method for identifying cell-internalizing RNA aptamers for delivering siRNAs to target cells.  187-199.  RNA Interference. Springer; 
32- Veedu, R. N. 2017. Aptamers: Tools for Nanotherapy and Molecular Imaging. CRC Press.
33- Veedu, R. N. and J. Wengel. 2009. Locked nucleic acid as a novel class of therapeutic agents. RNA biology 6: 321-323.
34- Veedu, R. N. and J. Wengel. 2009. Locked nucleic acid nucleoside triphosphates and polymerases: on the way towards evolution of LNA aptamers. Molecular Biosystems 5: 787-792.
35- Veedu, R. N. and J. Wengel. 2010. Locked nucleic acids: promising nucleic acid analogs for therapeutic applications. Chemistry & biodiversity 7: 536-542.
36- Wang, Y., Y. Luo, T. Bing, Z. Chen, M. Lu, N. Zhang, D. Shangguan and X. Gao. 2014. DNA aptamer evolved by cell-SELEX for recognition of prostate cancer. PLoS One 9: e100243.
37- Zhou, J. and J. Rossi. 2017. Aptamers as targeted therapeutics: current potential and challenges. Nature reviews Drug discovery 16: 181.
38- Zuker, M. 2003. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic acids research 31: 3406-3415.