آنالیز بیان ژن ماهیچه اسکلتی به منظور شناسایی ژن‌های مؤثر در فرایند رشد گاو گوشتی

نوع مقاله : مقاله کامل

نویسندگان

1 گروه علوم دامی، دانشکده کشاورزی، دانشگاه یاسوج

2 گروه علوم دامی، دانشکده کشاورزی، دانشگاه جیرفت

چکیده

هدف از انجام این پژوهش شناسایی ژن‌های مؤثر در فرایند رشد و نمو گاو گوشتی با استفاده از پروفایل بیان ژن می‌باشد. رﺷﺪ ﺑﻪ ﻋﻨﻮان ﺗﻐﯿﯿﺮات وزن زﻧﺪه در ﻫﺮ واﺣﺪ زﻣﺎن ﯾﺎ ﺗﻮﺻﯿﻒ ﻧﻤﻮداری وزن در ﻣﻘﺎﺑﻞ ﺳﻦ ﺣﯿﻮان ﺑﯿﺎن می‌شود. رﺷﺪ ﺣﯿﻮان ﻧﺘﯿﺠﻪ ﻓﺮآﯾﻨﺪﻫﺎی زیستی ﻣﺘﻌﺪدی اﺳﺖ و ژﻧﻮﺗﯿﭗ، ﺗﻌﯿﯿﻦ ﮐﻨﻨﺪه ﺣﺪاﮐﺜﺮ ﺳﻄﺤﯽ اﺳﺖ ﮐﻪ اﯾﻦ ﻓﺮآﯾﻨﺪﻫﺎ ﻣﯽﺗﻮاﻧﻨﺪ رخ دﻫﻨﺪ. در این مطالعه داده‌های خام مربوط به سنین تولد، سه ماهگی، هفت ماهگی، 12 ماهگی، 20 ماهگی، 25 ماهگی و 30 ماهگی با فرمت TXT از پایگاه داده ArrayExpress با شماره دسترسی E-GEOD-25554 دانلود شدند. در مرحله بعد، ابتدا کنترل کیفیت داده‌های خام موجود با استفاده از بسته Limma، موجود در نرم‌افزار R با روش تحلیل مؤلفه‌های اساسی (PCA) و سپس نرمال‌سازی داخل ریزآرایه‌ها با استفاده از روش LOESS و بین نمونه‌ها به روش چندک انجام شد. معیارهای شناسایی ژن‌های با بیان افتراقی و معنی‌داری دو شاخص (2- > Fold Change > 2) و (Adj P-Value < 0.05) بودند. بررسی مسیرهای زیستی توسط پایگاه DAVID انجام شده و بازسازی شبکه تنظیم بیان ژن توسط نرم‌افزار Cytoscape صورت گرفت. نتایج آنالیز نشان داد در سنین متفاوت در مجموع 1030 ژن مرتبط با رشد تفاوت معنی‌داری داشتند که از این تعداد 518 ژن افزایش بیان و 512 ژن کاهش بیان داشتند. از جمله مسیرهای سیگنال‌دهی مؤثر بر فرایند رشد می‌توان Wnt، Insulin، IGF-I را نام برد و از مهم‌ترین ژن‌های شناسایی شده در این مطالعه FN1 ،SOD2 ،PCK1 ،HMOX1 ، SERPINE1 ، CST3، STAT3 و HSPA1A می‌باشند. ژن‌ FN1 در سنین 25-20 و 30-25 ماهگی،SOD2 در سن 3-0 ماهگی، HMOX1 در سنین 3-0 و 20-12 ماهگی، SERPINE1 در سن 7-3 ماهگی، PCK1 در سن 25-20 ماهگی، STAT3 در سن 25-20 ماهگی و HSPA1A در سن 30-25 ماهگی افزایش بیان معنی‌داری داشتند. بنابراین نتایج این مطالعه می‌تواند اطلاعات تکمیلی برای درک بهتر ارتباط ژن‌ها و مسیرهای زیستی آن‌ها در فرایند رشد و استفاده در برنامه‌های اصلاح نژاد دام فراهم ‌آورد.

کلیدواژه‌ها


عنوان مقاله [English]

Gene expression analysis of skeletal muscle to identify genes that influence bovine growth process

نویسندگان [English]

  • F. Aneh Shebh Naseri 1
  • M. R. Bahreini Behzadi 1
  • Z. Roudbari 2
  • S. Eskandarynasab 1
1 Department of Animal Science, Faculty of Agriculture, Yasouj University
2 Department of Animal Science, Faculty of Agriculture, University of Jiroft
چکیده [English]

The purpose of this study was to identify genes that influence bovine growth process using gene expression profile. Growth can be expressed as the change of live weight based on time unit or graph description of weight against animal age. Growth is the result of different biological processes and genetics determines the highest level that these processes can occur. In this study raw data at birth, 3, 7, 12, 20, 25, and 30 months in TXT format were obtained from ArrayExpress database with E-GEOD-2554 accession number. In the next step, the quality control assessment of the existing raw data was performed using Limma package in R environment by PCA method and then the intra array normalization was done by LOESS method and between samples by quantile method. The criteria for identifying genes with differential expression were the absolute value of fold change larger than 2 and adj P-Value < 0.05. DAVID database was used for investigation of biological pathways and reconstruction of the gene expression network were done by Cytoscape software. The results showed that there were significant differences in expression of 1030 growth-related genes at different ages. 518 genes were associated with increased expression and 512 genes with reduced expression. The Wnt, insulin and IGF-I were main signaling pathways that influences growth process. The most important genes identified in this study were FN1, SOD2, HMOX1, SERPINE1, PCK1, STAT3 and HSPA1A. FN1 gene at 20-25 and 25-30 months of age, SOD2 gene at 0-3 months of age, HMOX1 gene at 0-3 and 12-20 months of age, SERPINE1 gene at 3-7 months of age, PCK1 gene at 20-25 months of age, STAT3 gene at 20-25 months of age and HSPA1A gene at 25-30 months of age have a significant increase in expression. Therefore, the results of this study could provide additional information to better understand the relationship between genes and their biological pathways in the growth process that can be used in animal breeding programs.

کلیدواژه‌ها [English]

  • Network Analysis
  • Bioinformatics
  • Database
  • Microarray
  • Biological Pathway
1-Akira, S. 2000. Roles of STAT3 defined by tissue-specific gene targeting. Oncogene 109: 1143-1148.
2-Alipanah, M., Z. Roudbari, A. Javadmanesh, M. Sataei Mokhtari, H. Seyedabadi and F. Gharari. 2018. Identification of biological pathways involved in body growth of cattle using gene expression profiles, Animal Sciences Journal, 31(119): 59-70.
3-Andrae, J. and C. Betsholtz. 2008. Role of derived growth factors in physiology and medicine. Genes and development 22(10): 1276-1312.
4-Ayer, A., A. Zarjou, A. Agarwal and R. Stocker. 2016. Heme oxygenises in cardiovascular health and disease. Physiological Reviews 96(4): 1449-1508.
5-Barberi, L., B.M. Scicchitano, M. Rossi, A. Biogot, S. Duguez, A. Wielgosik and C. Franceschi. 2013. Age-dependent alteration in muscle regeneration the critical role of tissue. Biogerontology 14(3): 273-292.
6-Bolger, A., F. Scossa, M.E. Bolger, C. Lanz, F. Maumus, T. Tohge and E.A. Fich. 2014. The genome of the stress-tolerant wild tomato species solanum pennellii. Nature Genetics 46(9): 1034.
7-Bukurova, Y.A., S.L. Khankin, G.S. Krasnov, E.S. Grigoreva, T.D. Mashkova, N.A. Lisitsyn and V.L. Karpov. 2010. Estimation of the efficiency of 2D analysis and bioinformatics search in identification of protein markers for colon tumors. Molecular Biology 44(2): 334-340.
8-Caixeta, E.S., M.L. Sutton, R.B. Gilchrist, J.G. Thompson, C.A. Price, M.F. Machado and J. Buratini. 2013. Bone morphogenetic protein 15 and fibroblast growth factor 10 enhance cumulus expansion, glucose uptake and expression of genes in the ovulatory cascade during in vitro maturation of bovine cumulus-oocyte complexes. Reproduction 146(1): 1389-1399.
9-Cameron, N.D. 1997. Selection indices and prediction of genetic merit in animal breeding. First edition. CAB International.
10-Casas, E., S.D. Shackerford, J.W. Keele, R.T. Stone, S.M. Kanopes and M. Koohmareie. 2000. Quantitative trait loci affecting growth and carcass composition of cattle segregating alternate from of myostatin. Journal of Animal Science 78: 560-569.
11-Cookson, W., L. Liang, G. Abecasis and M. Moffatt. 2009. Mapping complex disease traits with global gene expression. Nature Reviews Genetics 10(5): 184-194.
12-Druka, A., E. Potokina, Z. Luo, N. Jiang, X. Chen, M. Kearsey and R. Waugh. 2010. Expression quantitative trait loci analysis in plants. Biotechnology 8(1): 10-27.
13-Gerrard, D.E. and A.L. Grant. 1994. Insulin-like growth factor-II expression in developing skeletal muscle of double muscled and normal cattle. Domestic Animal Endocrinology 11(4): 339-347.
14-Gottesfeld, J.M. and C.F. Barbas. 2003. RNA as a transcriptional activator. Chemistry and Biology 10(7): 584-585.
15-Gupta, S., M.R. Clarkson, J. Duggan and H.R. Brady. 2000. Connective tissue growth factor potential role in glomerulosclerosis and tubule interstitial fibrosis. Kidney International 58(4): 1389-1399.
16-Hessani, Z.H., M.R. Nasiri, M.R. Bakhtiarizadeh, M. Tahmourespur, A. Javadmanesh. 2018. Gene expression analysis on apoptosis network and design it in Esfahani and Ross breeds. Iranian Journal of Animal Science Research 10(1): 117-130 (Abstract in English).
17-Huang, W., Y. Guo, W. Du, X. Zhang, A. Li and X. Miao. 2017. Global transcriptom analysis identifies differentially expressed genes related to lipid metabolism in wagyu and Holstein cattle. Scientific Reports 7(1): 5278-5286.
18-Koojman, R. 2006. Regulation of apoptosis by insulin-like growth factor (IGF-I). Cytokine and Growth Factor Reviews 17(4): 305-323.
19-Latorre, P., C. Burgos, J. Hidalgo, L. Varona, J.A. Carrodeguas and P. Lopez-Buesa. 2016. C.A2456C- substitution in PCK1 changes the enzyme kinetic and functional properties modifying fat distribution pigs. Scientific Reports 6: 19617.
20-Lei, M., Q. Nie, X. Peng and X. Kodama. 2005. Single nucleotide polymorphisms of the chicken insulike factor binding protein 2 genes associated with chicken growth and carcass traits. Poultry Science 84(1): 1191-1198.
21-Molinelli, E.J., A. Korkut, W. Wang, M.L. Miller, N.P. Gauthier, X. Jing and C.A. Pratilas. 2013. Perturbation biology: inferring signaling networks in cellular systems. PLOS Computational Biology 9(12): e1003290.
22-Rosa, G.J. and B.D. Valente. 2013. Inferring causal effects from observational data in livestock. Journal of Animal Science 91(1): 553-564.
23-Tian, J. and S.T. Andreadis. 2009. Independent and high-level dual-gene expression in adult stem-progenitor cells from a signal lentiviral vector. Gene Therapy 16(7): 847-884.
24-Von Maltzahn, J., N.C. Chang, C.F. Bentzinger and M.A. Rudnicki. 2012. Wnt signaling in myogenesis. Trends in Cell Biology 22(11): 602-609.
25-Wang, Y.H., N.I. Bower, A. Reverter, S.H. Tan, N. Jager, R. Wang and S.A. Lehnert. 2009. Gene expression patterns during intramuscular fat development in cattle. Journal of Animal Science 87(1): 119-130.