تولید حیوانات تراریخت با بهره مندی از فناوری‌های نوین تولید مثل: میکرواینجکشن، الکتروپوریشن و انتقال هسته

نوع مقاله : مقاله مروری

نویسنده

بخش تحقیق، پرورش و تولید حیوانات آزمایشگاهی، موسسه تحقیقات واکسن و سرم سازی رازی، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج، ایران.

چکیده

فناوری‌های تولید حیوانات تراریخت به عنوان یکی از زمینه‌های تحقیقاتی در شاخه زیست‌فناوری به حساب می‌آید که در دهه‌ی اخیر از سرعت رشد بسیار زیادی برخوردار شده است. حیوانات تراریخت در حقیقت نوعی از حیوانات هستند که به‌واسطه پیشرفت و ترکیب روش‌های نوین تولید برون تنی رویان و مهندسی ژنتیک، حامل قطعه ای از ژنوم موجودی از گونه جانوری دیگر یا انسانی هستند. شایان ذکر است که صرفا به واسطه‌ی انتقال ژن و یا ژن‌هایی از یک گونه به گونه‌ای دیگر، نمی‌توان ادعا نمود که حیوان تراریخت تولید شده است. در حقیقت پس از افزودن ماده ژنتیکی جدید به ژنوم موجود پذیرنده می‌بایست توانایی انتقال آن ژن به نسل بعد در حیوان پذیرنده ایجاد شده باشد و همچنین محصول بیانی آن ژن نیز می‌بایست به شکل کامل و به صورتی که عملکرد فیزیولوژیک آن ژن حفظ شده باشد قابل شناسایی و استحصال باشد. در این مقاله مروری به بررسی مهمترین روش های استفاده شده در تولید حیوانات تراریخته پرداخته شده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Production of transgenic animal: Microinjection, electroporation, and nuclear transfer

نویسنده [English]

  • Navid Dadashpour Davachi
Department of Research, Breeding and Production of Laboratory Animals, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran.
چکیده [English]

The technology of transgenic animals' production is one of the areas of research in the biotechnology branch, which has a very fast growth rate in the last decade. To current knowledge, several methods have been developed for the production of transgenic animals such as microinjection of the desired genetic structure into the male pre-core in Zygote, gene transfer using embryonic stem cells transmission to the embryos during the blastocyst stage, gene transfer by sperm and using the new and workable CRISPER/Cas9 method. The key to success in the production of transgenic animals is the optimization of gene transfer method and the exact expression of the transmitted gene. A number of new technologies have been presented in the field of gene transfer in recent decades, which have reduced both research and production costs and improved the speed and delicacy of transmission processes. In the present review the most common methods in the production of transgenes would be discussed.

کلیدواژه‌ها [English]

  • Transgenic Animal
  • Animal Model
  • Electroporation
  • Micro-injection
1. Gordon JW, Scangos GA, Plotkin DJ, Barbosa JA, Ruddle FH. Genetic transformation of mouse embryos by microinjection of purified DNA. Proceedings of the National Academy of Sciences of the United States of America. 1980;77(12):7380-4.
2. Freitas VJ, Serova IA, Andreeva LE, Dvoryanchikov GA, Lopes ES, Jr., Teixeira DI, et al. Production of transgenic goat (Capra hircus) with human Granulocyte Colony Stimulating Factor (hG-CSF) gene in Brazil. Anais da Academia Brasileira de Ciencias. 2007;79(4):585-92.
3. Hammer RE, Pursel VG, Rexroad Jr CE, Wall RJ, Bolt DJ, Ebert KM, et al. Production of transgenic rabbits, sheep and pigs by microinjection. Nature. 1985;315(6021):680.
4. Salamone D, Bevacqua R, Hiriart M, Buemo C, Luchetti C, Moro L, et al. Transgenesis in farm animals. Anim Reprod. 2012;9(4):772-6.
5. Bosch P, Hodges CA, Stice SL. Generation of transgenic livestock by somatic cell nuclear transfer. Biotecnología Aplicada. 2004;21(3):128-36.
6. Hodges CA, Stice SL. Generation of bovine transgenics using somatic cell nuclear transfer. Reproductive biology and endocrinology : RB&E. 2003;1:81.
7. Brackett BG, Baranska W, Sawicki W, Koprowski H. Uptake of heterologous genome by mammalian spermatozoa and its transfer to ova through fertilization. Proceedings of the National Academy of Sciences of the United States of America. 1971;68(2):353-7.
8. Lavitrano M, Camaioni A, Fazio VM, Dolci S, Farace MG, Spadafora C. Sperm cells as vectors for introducing foreign DNA into eggs: Genetic transformation of mice. Cell. 1989;57(5):717-23.
9. Spadafora C. Sperm cells and foreign DNA: a controversial relation. Bioessays. 1998;20(11):955-64.
10. Pereyra-Bonnet F, Gibbons A, Cueto M, Sipowicz P, Fernandez-Martin R, Salamone D. Efficiency of sperm-mediated gene transferin the ovine by laparoscopic insemination, in vitro fertilization and ICSI. The Journal of reproduction and development. 2011;57(2):188-96.
11. Pereyra-Bonnet F, Fernandez-Martin R, Olivera R, Jarazo J, Vichera G, Gibbons A, et al. A unique method to produce transgenic embryos in ovine, porcine, feline, bovine and equine species. Reproduction, fertility, and development. 2008;20(7):741-9.
12. Bevacqua RJ, Pereyra-Bonnet F, Fernandez-Martin R, Salamone DF. High rates of bovine blastocyst development afterICSI-mediated gene transfer assisted by chemical activation. Theriogenology. 2010;74(6):922-31.
13. Kishigami S, Wakayama S, Hosoi Y, Iritani A, Wakayama T. Somatic cell nuclear transfer: infinite reproduction of a unique diploid genome. Experimental cellresearch. 2008;314(9):1945-50.
14. Oback B, Wells DN. Donor cell differentiation, reprogramming, and cloning efficiency: elusive or illusive correlation? Molecular reproduction and development. 2007;74(5):646-54.
15. Moro L, Vichera G, Olivera R, Salamone D. Evaluación de la enucleación asistida por demecolcina como método para evitar la exposición a luz UV en la producción de embriones bovinos por técnica de clonación. InVet. 2010;12(2):195-204.
16. Canel N, Bevacqua R, Fernandez-Martin R, Salamone DF. Activation with ionomycin followed by dehydroleucodine and cytochalasin B for the production of parthenogenetic and cloned bovine embryos. Cellular reprogramming. 2010;12(4):491-9.
17. Vichera G, Alfonso J, Duque CC, Silvestre MA, Pereyra-Bonnet F, Fernandez-Martin R, et al. Chemical activation with a combination of ionomycin and dehydroleucodine for production of parthenogenetic, ICSI and cloned bovine embryos. Reproduction in domestic animals = Zuchthygiene. 2010;45(6):e306-12.
18. Arat S, Gibbons J, Rzucidlo SJ, Respess DS, Tumlin M, Stice SL. In vitro development of bovine nuclear transfer embryos from transgenic clonal lines of adult and fetal fibroblast cells of the same genotype. Biology of reproduction. 2002;66(6):1768-74.
19. Cibelli JB, Stice SL, Golueke PJ, Kane JJ, Jerry J, Blackwell C, et al. Transgenic bovine chimeric offspring produced from somatic cell-derived stem-like cells. Nature biotechnology. 1998;16(7):642-6.
20. George A, Sharma R, Singh KP, Panda SK, Singla SK, Palta P, et al. Production of cloned and transgenic embryos using buffalo (Bubalus bubalis) embryonic stem cell-like cells isolated from in vitro fertilized and cloned blastocysts. Cellular reprogramming. 2011;13(3):263-72.
21. Goto Y, Hirayama M, Takeda K, Tukamoto N, Sakata O, Kaeriyama H, et al. Effect of synchronization of donor cells in early G1-phase using shake-off method on developmental potential of somatic cell nuclear transfer embryos in cattle. Animal science journal = Nihon chikusan Gakkaiho. 2013;84(8):592-9.
22. Huang B, Cui K, Li T, Wang X, Lu F, Liu Q, et al. Generation of buffalo (Bubalus bubalis) transgenic chimeric and nuclear transfer embryos using embryonic germ-like cells expressing enhanced green fluorescent protein. Reproduction in domestic animals = Zuchthygiene. 2010;45(1):103-8.
23. Tani T, Kato Y, Tsunoda Y. Direct exposure of chromosomes to nonactivated ovum cytoplasm is effective for bovine somatic cell nucleus reprogramming. Biology of reproduction. 2001;64(1):324-30.
24. Kato Y, Tani T, Sotomaru Y, Kurokawa K, Kato J, Doguchi H, et al. Eight calves cloned from somatic cells of a single adult. Science. 1998;282(5396):2095-8.
25. Cho J, Bhuiyan MM, Shin S, Park E, Jang G, Kang S, et al. Development potential of transgenic somatic cell nucleartransfer embryos according to various factors of donor cell. The Journal of veterinary medical science. 2004;66(12):1567-73.
26. Wells DN, Misica PM, Tervit HR. Production of cloned calves following nuclear transfer with cultured adult mural granulosa cells. Biology of reproduction. 1999;60(4):996-1005.
27. Akagi S, Matsukawa K, Takahashi S. Factors affecting the development of somatic cell nuclear transfer embryos in Cattle. The Journal of reproduction and development. 2014;60(5):329-35.
28. Akagi S, Takahashi S, Adachi N, Hasegawa K, Sugawara T, Tozuka Y, et al. In vitro and in vivo developmental potential of nuclear transfer embryos using bovine cumulus cells prepared in four different conditions. Cloning and stem cells. 2003;5(2):101-8.
29. DadashpourDavachi N, Zare Shahneh A, Kohram H, Zhandi M, Shamsi H, Hajiyavand AM, et al. Differential influence of ampullary and isthmic derived epithelial cells on zona pellucida hardening and in vitro fertilization in ovine. Reproductive Biology. 2016;16(1):61-9.
30. Akshey YS, Malakar D, De AK, Jena MK, Garg S, Dutta R, et al. Hand-made cloned goat (Capra hircus) embryos-a comparison of different donor cells and culture systems. Cellular reprogramming. 2010;12(5):581-8.
31. Cervera RP, Garcia-Ximenez F. Oocyteage and nuclear donor cell type affect the technical efficiency of somatic cloning in rabbits. Zygote. 2003;11(2):151-8.
32. Lanza RP, Cibelli JB, Blackwell C, Cristofalo VJ, Francis MK, Baerlocher GM, et al. Extension of cell life-span and telomere length in animals cloned from senescent somatic cells. Science. 2000;288(5466):665-9.
33. Campbell KH, Alberio R. Reprogramming the genome: role of the cell cycle. Reproduction. 2003;61:477-94.
34. Dadashpour Davachi N, Fallahi R, Dirandeh E, Liu X, BartlewskiPM. Effects of co-incubation with conspecific ampulla oviductal epithelial cells and media composition on cryotolerance and developmental competence of in vitro matured sheep oocytes. Theriogenology. 2018;120:10-5.
35. Oback B, Wells DN. Cloning cattle. Cloning and stem cells. 2003;5(4):243-56.
36. Ideta A, Hayama K, Urakawa M, Tsuchiya K, Aoyagi Y, Saeki K. Comparison of early development in utero of cloned fetuses derived from bovine fetal fibroblasts at the G1 and G0/G1 phases. Animal reproduction science. 2010;119(3-4):191-7.
37. Ideta A, Urakawa M, Aoyagi Y, Saeki K. Early development in utero of bovine nuclear transfer embryos using early G1 and G0 phase cells. Cloning and stem cells. 2007;9(4):571-80.
38. Kasinathan P, Knott JG, Wang Z, Jerry DJ, Robl JM. Production of calves from G1 fibroblasts. Nature biotechnology. 2001;19(12):1176-8.
39. Dadashpour Davachi N, Kohram H, Zainoaldini S. Cumulus cell layers as a critical factor in meiotic competence and cumulus expansion of ovine oocytes. Small Ruminant Research. 2012;102(1):37-42.
40. Zeinoaldini S, Jafari Z, Sarmast F, Torbati E, Dadashpour Davachi N. Different Harvesting Techniques Used in Ovine in vitro Embryo Production. Scimetr. 2013;1(1):e87326.
41. Miao X. Recent advances in the development of new transgenic animal technology. Cellular and Molecular Life Sciences. 2013;70(5):815-28.
42. Dadashpour Davachi N, Kohram H, Zare Shahneh A, Zhandi M, Goudarzi A, Fallahi R, et al. The effect of conspecific ampulla oviductal epithelial cells duringin vitro maturation on oocyte developmental competence and maturation-promoting factor (MPF) activity in sheep. Theriogenology. 2017;88:207-14.
43. Rodriguez-Osorio N, Urrego R, Cibelli JB, Eilertsen K, Memili E. Reprogramming mammalian somatic cells. Theriogenology. 2012;78(9):1869-86.
44. Liu X, Wang Y, Tian Y, Yu Y, Gao M, Hu G, et al. Generation of mastitis resistance in cows by targeting human lysozyme gene to β-casein locus using zinc-finger nucleases. Proc R Soc B. 2014;281(1780):20133368.
45. Ramirez CL, Foley JE, Wright DA, Muller-Lerch F, Rahman SH, Cornu TI, et al. Unexpected failure rates for modular assembly of engineered zinc fingers. Nature methods. 2008;5(5):374-5.
46. Pattanayak V, Ramirez CL, Joung JK, Liu DR. Revealing off-target cleavage specificities of zinc-finger nucleases by in vitro selection. Nature methods. 2011;8(9):765-70.
47. Radecke S, Radecke F, Cathomen T, Schwarz K. Zinc-finger nuclease-induced gene repair with oligodeoxynucleotides: wanted and unwanted target locus modifications. Mol Ther. 2010;18(4):743-53.
48. Gaj T, Gersbach CA, Barbas CF, 3rd. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends in biotechnology. 2013;31(7):397-405.