بررسی اثر سطوح مختلف باکتری لاکتوباسیلوس اسیدوفیلوس بر پاسخ استرس اکسیداتیو و فراسنجه‌های بیوشیمیایی سرم خون ماهی قزل‌آلای رنگین‌کمان در مواجهه با فلز سرب در جیره غذایی

نوع مقاله: مقاله کامل

نویسندگان

1 استادیار، گروه علوم درمانگاهی، دانشکده دامپزشکی، دانشگاه شهید چمران اهواز، اهواز، ایران

2 دانشجوی دکترای بهداشت آبزیان، دانشکده دامپزشکی، دانشگاه شهید چمران اهواز، اهواز، ایران

3 دکترای بهداشت آبزیان، دانشکده دامپزشکی، دانشگاه شهید چمران اهواز، اهواز، ایران

4 دانشجوی دکتری عمومی دامپزشکی، دانشکده دامپزشکی، دانشگاه شهید چمران اهواز، اهواز، ایران

چکیده

استفاده از ترکیبات فراسودمند مانند پروبیوتیک‌ها می‌تواند در بهبود عملکرد آبزیان موثر باشد. هدف از مطالعه حاضر تاثیر سطوح مختلف باکتری پروبیوتیکی i(La) Lactobacillus acidophilusروی برخی از فاکتورهای بیوشیمیایی و آنتی‌اکسیدانی سرم خون ماهی قزل‌آلای رنگین‌کمان (Oncorhynchus mykiss) پس از مسمومیت با فلز سرب در جیره غذایی بوده است. تعداد 375 قطعه ماهی قزل‌آلا بطور تصادفی به پنج گروه در سه تکرار تقسیم شدند. گروه‌های یک، دو و سه به ترتیب از ابتدا تا انتهای آزمایش با جیره‌حاوی 106×5، 107×5 و 108×5 CFU/gr باکتری پروبیوتیکی تغذیه شدند. گروه چهارم (کنترل) در تمام دوره با جیره فاقد پروبیوتیک و بدون فلز سرب تغذیه شد. گروه پنجم به مدت 45 روز با جیره فاقد پروبیوتیک و سپس (به مدت 21 روز) همراه با تیمارهای پروبیوتیکی تا انتهای آزمایش با جیره حاوی µg/kg 500 نیترات سرب تغذیه شد. خونگیری از ماهیان در روزهای صفر، 45، 52، 59 و 66 آزمایش انجام شد. نتایج نشان داد که در گروه دو بعد از 45 روز مصرف پروبیوتیک مقادیر گلوکز، فسفر، ALP و SOD افزایش و مقادیر کلسترول و تری‌گلیسرید کاهش معنی‌داری نسبت به گروه کنترل داشته است (05/0 > p). پس از مواجهه با سرب مقادیر LDH در روز 59 و مقادیر ALP در تمامی روزها در گروه دو نسبت به گروه پنج بطور معنی‌داری کاهش یافت (05/0 >p). همچنین سطح آنزیم کاتالاز و SOD در گروه دو نسبت به گروه پنج در روز 66 افزایش معنی‌داری داشته است (05/0 > p). نتایج این مطالعه نشان داد که باکتری La بعنوان یک پروبیوتیک می‌تواند در بهبود شاخص‌های سرمی ماهی قزل‌آلا قبل و پس از مواجهه با فلز سرب نقش داشته باشد. همچنین غلظت 107×5 CFU/gr پروبیوتیک روی شاخص‌های سرمی تاثیر بهتری داشته است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigation of effect of variouslevels of Lactobacillus acidophilus on serum oxidative stress response and biochemical parameters of rainbow trout (Oncorhynchus mykiss) exposed to lead in diet

نویسندگان [English]

  • T. Mohammadian 1
  • R. Ghanei-Motlagh 2
  • S.S. Hosseini 3
  • S. Robatkarimi 4
  • M. Emam 4
  • N. Alijani 4
  • H. Bakhshi 4
1 Assistant professor, Department of clinical sciences, Faculty of veterinary medicine, Shahid chamran university of Ahvaz, Ahvaz, Iran.
2 PhD student of Aquatic animal health, Faculty of veterinary medicine, Shahid chamran university of Ahvaz, Ahvaz, Iran.
3 PhD of Aquatic animal health, Faculty of veterinary medicine, Shahid chamran university of Ahvaz, Ahvaz, Iran.
4 DVM student, Faculty of veterinary medicine, Shahid chamran university of Ahvaz, Ahvaz, Iran.
چکیده [English]

Application of functional ingredients like probiotics could be effective in promotiong of aquatic animals performance. The aim of this study was to investigate the effect of various levels of probiotic bacterium Lactobacillus acidophilus on some serum biochemical and antioxidant factors of rainbow trout (Oncorhynchus mykiss) following dietary lead poisoning. 375 trout fish were randomly divided into five groups in three replications. Groups 1, 2 and 3 were respectively fed with diets containing 5 × 106, 5 × 107 and 5 × 108 CFU / g probiotic bacteria from beginning to end of the experiment. Group 4 (control) was fed witha diet free of probiotic and lead. Group 5 was fed with probiotic-free diet for 45 days and then with a diet containing 500 μg / kg lead nitrate (for 21 days) to end of the experiment similar to probiotic-consuming treatments. Bleeding of fish was done on days 0, 45, 52, 59 and 66. The results showed that levels of glucose, phosphorus,ALP and SOD were significantly higher and cholesterol and triglyceride levels were significantly lower (p <0.05)in group 2 compared to control group after 45 days probiotic consumption. After lead exposure, LDH values on day 59 and ALP values in all days were significantly lower in group 2 compared to group 5 (p <0.05). Also, catalase and SOD levels were significantly higher in group 2 than group 5 on day 66 (p <0.05). The results of this study revealed that Lactobacillus acidophilus,as a probiotic,can be effective in improving the blood serum indices of trout before and after lead exposure. Also, level of 5 × 107 CFU / g of probiotic had a better effect on the serum parameters.

کلیدواژه‌ها [English]

  • Blood serum
  • Lead metal
  • Rainbow trout
  • Lactobacillus acidophilus
Agrahari S., K.C. Pandey and K. Gopal. 2007. Biochemical alteration induced by monocrotophos in the blood plasma of fish, Channa punctatus (Bloch). Pesticide Biochemistry and Physiology 88,268-272.
2- Akbary P., S.S. Yarahmadi and A. Jahanbakhshi. 2018. Hematological, hepatic enzymes’ activity and oxidative stress responses of gray mullet (Mugil cephalus) after sub-acute exposure to copper oxide. Environmental Science and Pollution Research 25,1800-1808.
3- Al Dohail M.A., R. Hashim and M. Aliyu Paiko. 2011. Evaluating the use of Lactobacillus acidophilus as a biocontrol agent against common pathogenic bacteria and the effects on the haematology parameters and histopathology in African catfish Clarias gariepinus juveniles. Aquaculture Research 42,196-209.
4- Alves L., C. Glover and C. Wood. 2006. Dietary Pb accumulation in juvenile freshwater rainbow trout (Oncorhynchus mykiss). Archives of Environmental Contamination and Toxicology 51,615.
5- Balcázar J.L., I. De Blas, I. Ruiz-Zarzuela, D. Vendrell, O. Gironés and J.L. Muzquiz. 2007. Enhancement of the immune response and protection induced by probiotic lactic acid bacteria against furunculosis in rainbow trout (Oncorhynchus mykiss). FEMS Immunology & Medical Microbiology 51,185-193.
6- Brucka-Jastrzębska E. 2010. The effect of aquatic cadmium and lead pollution on lipid peroxidation and superoxide dismutase activity in freshwater fish. Polish Journal of Environmental Studies 19,1139-1150.
7- Burden V., M. Sandheinrich and C. Caldwell. 1998. Effects of lead on the growth and δ-aminolevulinic acid dehydratase activity of juvenile rainbow trout, Oncorhynchus mykiss. Environmental Pollution 101,285-289.
8- Dai W., L. Fu, H. Du, C. Jin and Z. Xu. 2009. Changes in growth performance, metabolic enzyme activities, and content of Fe, Cu, and Zn in liver and kidney of tilapia (Oreochromis niloticus) exposed to dietary Pb. Biological trace element research 128,176-183.
9- Dawood M.A., S. Koshio, M. Ishikawa and S. Yokoyama. 2015. Interaction effects of dietary supplementation of heat-killed Lactobacillus plantarum and β-glucan on growth performance, digestibility and immune response of juvenile red sea bream, Pagrus major. Fish & Shellfish Immunology 45,33-42.
10- El-Nezami H., P. KANKAANPÄÄ, S. Salminen and J. Ahokas. 1998. Physicochemical alterations enhance the ability of dairy strains of lactic acid bacteria to remove aflatoxin from contaminated media. Journal of food protection 61,466-468.
11- El-Shafei H. 2017. Alterations in the leucocytes and serum biochemistry in Grey Mullet (Mugil cephalus L.) fingerlings exposed to sub lethal doses of lead for different exposure periods. Journal of Aquaculture Research and Development 8.
12- Ellman G.L. 1959. Tissue sulfhydryl groups. Archives of Biochemistry and Biophysics 82,70-77.
13- Elsanhoty R.M., I. Al-Turki and M.F. Ramadan. 2016. Application of lactic acid bacteria in removing heavy metals and aflatoxin B1 from contaminated water. Water Science and Technology 74,625-638.
14- Fırat Ö. and F. Kargın. 2010. Individual and combined effects of heavy metals on serum biochemistry of Nile tilapia Oreochromis niloticus. Archives of environmental contamination and toxicology 58,151-157.
15- Giannenas I., E. Triantafillou, S. Stavrakakis, M. Margaroni, S. Mavridis, T. Steiner and E. Karagouni. 2012. Assessment of dietary supplementation with carvacrol or thymol containing feed additives on performance, intestinal microbiota and antioxidant status of rainbow trout (Oncorhynchus mykiss). Aquaculture 350,26-32.
16- Giri S., V. Sukumaran, S. Sen and P. Jena. 2014. Effects of dietary supplementation of potential probiotic Bacillus subtilis VSG1 singularly or in combination with Lactobacillus plantarum VSG3 or/and Pseudomonas aeruginosa VSG2 on the growth, immunity and disease resistance of Labeo rohita. Aquaculture Nutrition 20,163-171.
17- Heydarnejad M.S., M. Khosravian-Hemamai and A. Nematollahi. 2013. Effects of cadmium at sub-lethal concentration on growth and biochemical parameters in rainbow trout (Oncorhynchus mykiss). Irish veterinary journal 66,11.
18- Javed M., M.I. Ahmad, N. Usmani and M. Ahmad. 2017. Multiple biomarker responses (serum biochemistry, oxidative stress, genotoxicity and histopathology) in Channa punctatus exposed to heavy metal loaded waste water. Scientific reports 7,1675.
19- Kane A.M., M. Soltani, H.A. Ebrahimzahe-Mousavi and K. Pakzad. 2016. Influence of probiotic, Lactobacillus plantarum on serum biochemical and immune parameters in vaccinated rainbow trout (Oncorhynchus mykiss) against streptococcosis/lactococosis. International Journal of Aquatic Biology 4,285.
20- Koroluk M., L. Ivanova and I. Maiorova. 1988. The method of definition of the activeness of catalase. Laboratorial work,16-19.
21- Latha M. and L. Pari. 2003. Preventive effects of Cassia auriculata L. flowers on brain lipid peroxidation in rats treated with streptozotocin. Molecular and Cellular Biochemistry 243,23-28.
22- Martinez C., M. Nagae, C. Zaia and D. Zaia. 2004. Acute morphological and physiological effects of lead in the neotropical fish Prochilodus lineatus. Brazilian Journal of Biology 64,797-807.
23- Mehrabi Z., F. Firouzbakhsh and A. Jafarpour. 2012. Effects of dietary supplementation of synbiotic on growth performance, serum biochemical parameters and carcass composition in rainbow trout (Oncorhynchus mykiss) fingerlings. Journal of Animal Physiology and Animal Nutrition 96,474-481.
24- Mirmazloomi S., D. Shahsavani and H. Baghshani. 2015. Studies on the protective effects of ascorbic acid and thiamine on lead-induced lipid and protein oxidation as well as enzymatic alterations in some tissues of Cyprinus carpio. Comparative Clinical Pathology 24,1231-1236.
25- Mohammadian T., M. Alishahi, M. Ghorbanpoor, M.R. Tabandeh and D. Gharibi. 2014. Evaluation of probiotic potential and immunostimulatory effects of some Lactobacillus bacteria isolated from Barbus grypus intestine. PhD Thesis, Shahid Chamran University Of Ahvaz, Ahvaz, Iran.
26- Mojabi A. 2011. Veterinary clinical biochemistry. 2nd Ed (In Farsi).
27- Mrvčić J., D. Stanzer, E. Šolić and V. Stehlik-Tomas. 2012. Interaction of lactic acid bacteria with metal ions: opportunities for improving food safety and quality. World Journal of Microbiology and Biotechnology 28,2771-2782.
28- Peixoto F.P., J. Carrola, A. Coimbra, C. Fernandes, P. Teixeira, L. Coelho, I. Conceição, M.M. Oliveira and A. Fontainhas-Fernandes. 2013. Oxidative stress responses and histological hepatic alterations in barbel, Barbus bocagei, from Vizela River, Portugal. Revista Internacional de Contaminacion Ambiental 29,29-38.
29- Rahimikia E. 2017. Analysis of antioxidants and serum biochemical responses in goldfish under nickel exposure by sub-chronic test. Journal of Applied Animal Research 45,320-325.
30- Safari R., M. Adel, C.C. Lazado, C.M.A. Caipang and M. Dadar. 2016. Host-derived probiotics Enterococcus casseliflavus improves resistance against Streptococcus iniae infection in rainbow trout (Oncorhynchus mykiss) via immunomodulation. Fish & ShellFish Immunology 52,198-205.
31- Sharifuzzaman S., A. Al-Harbi and B. Austin. 2014. Characteristics of growth, digestive system functionality, and stress factors of rainbow trout fed probiotics Kocuria SM1 and Rhodococcus SM2. Aquaculture 418,55-61.
32- Singh A.L. and P. Sarma. 2010. Removal of arsenic (III) from waste water using Lactobacillus acidophilus. Bioremediation Journal 14,92-97.
33- Srivastav A.K., R. Rai, N. Suzuki, D. Mishra and S.K. Srivastav. 2013. Effects of lead on the plasma electrolytes of a freshwater fish, Heteropneustes fossilis. International Aquatic Research 5,4.
34- Toutou M.M., A.A.A. Soliman, M.M.S. Farrag and A.E. Abouelwafa. 2016. Effect of probiotic and synbiotic food supplementation on growth performance and healthy status of grass carp, Ctenopharyngodon idella (Valenciennes, 1844). 1,111-117.
35- Urban P. and R. Kuthan. 2004. Application of probiotics in the xenobiotic detoxification therapy. Nukleonika 49,43-45.
36- Valiallahi J., M. Pourabasali, E. Janalizadeh and A. Bucio. Use of Lactobacillus for improved growth, and enhanced biochemical, hematological and digestive enzyme activity in fishes,(Cyprinus carpio L.), at Mazandaran Iran. North American Journal of Aquaculture.
37- Vine N., W. Leukes, H. Kaiser, S. Daya, J. Baxter and T. Hecht. 2004. Competition for attachment of aquaculture candidate probiotic and pathogenic bacteria on fish intestinal mucus. Journal of Fish Diseases 27,319-326.
38- Yu L., Q. Zhai, J. Zhu, C. Zhang, T. Li, X. Liu, J. Zhao, H. Zhang, F. Tian and W. Chen. 2017. Dietary Lactobacillus plantarum supplementation enhances growth performance and alleviates aluminum toxicity in tilapia. Ecotoxicology and Environmental Safety 143,307-314.
39- Zhang C.-N., X.-F. Li, W.-N. Xu, G.-Z. Jiang, K.-L. Lu, L.-N. Wang and W.-B. Liu. 2013. Combined effects of dietary fructooligosaccharide and Bacillus licheniformis on innate immunity, antioxidant capability and disease resistance of triangular bream (Megalobrama terminalis). Fish & Shellfish Immunology 35,1380-1386.