بررسی ارتباط متقابل بین شاخص های تشخیص وضعیت مس در خون و کبد گاو

شناسنامه علمی شماره

نویسندگان

1 دانش آموخته دکتری حرفه ای دامپزشکی، دانشکده دامپزشکی، دانشگاه ارومیه

2 دانشیار گروه علوم درمانگاهی، دانشکده دامپزشکی، دانشگاه ارومیه

چکیده

چگونگی ارتباط متقابل بین شاخص های وضعیت مس در 136 راس گاو کشتار شده مورد ارزیابی قرار گرفت. مقادیر مس پلاسما (µmol/L 5/14-5/5) و کبد (mg/kgDM 1/189-7/19)، سطح سرولوپلاسمین پلاسما (mg/L 2/178-4/58) و فعالیت سوپراکسید دیسموتاز گلبول های قرمز (EOSD) (U/mgHb 4/11-5/2) به ترتیب در 4/57، 6/34، 6/31 و 2/28 درصد از گاوهای تحت مطالعه کمتر از حد طبیعی بود. در تمامی موارد، غلظت مولیبدن پلاسما (µg/mL 5/14-10/0) و در 8/33 درصد از موارد، میزان مولیبدن کبد (mg/kgDM 4/11-0/5) بیش از حد طبیعی بود. از بین گاوهای با غلظت پایین مس پلاسما، در 7/57 درصد از موارد همزمان فعالیت (U/mgHb) (EOSD 8/9-5/2) نیز کمتر از حد طبیعی بود. در 3/38 و 0/50 درصد از گاوهای با مس کمتر از میزان طبیعی در کبد، هم زمان سطح سرولوپلاسمین پلاسما ( mg/L  3/140-4/85) و فعالیت  (U/mgHb ) (EOSD 2/9-5/2) نیز در محدوده کمبود بود. در تمام دام های با غلظت پایین مس و سرولوپلاسمین پلاسما و کبد و فعالیت پایین EOSD، غلظت مولیبدن پلاسما به طور معنی داری (0005/0>P) بیش از آن در مقایسه با گاوهای با عیار طبیعی پارامترهای مذکور بود. تنها در 7/15 درصد از گاوهای با فعالیت پایین EOSD ، سطوح سرلوپلاسمین در پلاسمای کمتر از طبیعی بود و فقط در 1 درصد از کل موارد تمام شاخص ها همزمان دچار کاستی بودند. در 5/38 درصد از گاوهای با غلظت پایین مس پلاسما و 2/36 درصد از گاوهای با مس پایین کبد، غلظت مولیبدن کبد ( mg/kgDM 4/11-7/2) بیش محدوده طبیعی بود. تجزیه و تحلیل داده ها حاکی از تداخل عمل پیچیده ای بین شاخص های وضعیت مس  بوده و نشانگر این است تنها با اتکاء به یک یافته آزمایشگاهی نمی توان تخمین قابل اعتمادی از وضعیت مس در گاو به عمل آورد. با این وجود، به نظر می رسد که ارزیابی همزمان غلظت مس پلاسما و فعالیت EOSD ممکن است راهکار عملی و مفیدی در برآورد وضعیت مس در گاو باشد.

عنوان مقاله [English]

Interrelationship between the indices of copper status in blood and liver of cattle

نویسندگان [English]

  • E Soleimanzadeh 1
  • B Dalir-Naghadeh 2
  • S Asri Rezaei 2
1 Graduated DVM Student, Faculty of Veterinary Medicine, Urmia Unversity, Urmia,Iran
2 Faculty of Veterinary Medicine Urmia Unversity, Urmia, Iran
چکیده [English]

The relationship between different indices of the copper deficiency was studied in 136 slaughtered male cattle (< 2 years). Copper status has been detected as marginally deficient in 57.4, 36.4, 34.6, and 28.2% of cattle based on the copper concentrations in plasma (5.5-14.5 μmol/L) and liver (19.7-189.1 mg/kgDM), plasma ceruloplasmin levels (85.4 - 178.2 mg/L) and erythrocyte superoxide dismutase (ESOD) activity (2.5-11.4 U/mgHb), respectively. In all cattle, the range of the molybdenum concentrations in plasma (0.1-1.45 μg/mL) was higher than the normal levels; however, in 33.8% of samples the liver molybdenum content (5.0-11.4 mg/kgDM) was higher than the normal range. In 57.7% of cattle with low level of plasma copper concentrations, a low level of ESOD activities (2.5-9.8 U/mgHb) was detected. In 38.3 and 50.0% of cattle with low levels of liver copper (19.7-50.0 mg/kgDM), the plasma ceruloplasmin (85.4-140.3 mg/L) and ESOD (2.5-9.2 U/mgHb) was lower than the normal ranges. In all cattle with low levels of liver and plasma copper and lower levels of plasma ceruloplasmin and EOSD activity, plasma molybdenum concentrations were significantly (P<0.0005) higher than to those with normal copper indices. Concurrent low levels of both EOSD activity and plasma cerlupasmin was only observed in 15.7% of cattle. Strikingly, only in 1% of the animals all indices were, simultaneously, lower than normal levels. In 38.5% of cattle with low level of plasma copper and 36.2% with low levels of liver copper, liver molybdenum (2.7-11.4 mg/kgDM) were higher than the normal ranges. In conclusion, complex relationship was observed between biomarkers of copper deficiency and it proved to be difficult to rely on only one index to interpret the copper status. Comparing various indices, it appears that assessment of plasma copper concentration accompanied by ESOD activity could provide a more practical and useful approach in evaluation of copper status in cattle.

1- زمانیان، ح. (1371) تحلیلی بر مس و بررسی پاتوسرولوژیکی کمبود مس در بره های اطراف شهرستان ارومیه، پایان نامه دکتری حرفه ای دامپزشکی. شماره 255، دانشکده دامپزشکی دانشگاه ارومیه.##
2- علیدادی، ن.؛ احمدی پیدانی، ر.؛ برزگر، ا. ؛  فرج زاده، م.ع.؛ مرتاض، ا.؛ خادم انصاری، م.ح.؛ دلیرنقده، ب. و عصری، س. (1379) بررسی وقوع کمبود مس در گوسفندان چراگاه های ارومیه، مجله پژوهش و سازندگی. شماره 51، صفحات##: 50-48.
3- علیدادی، ن.؛ فرج زاده، م.ع. ؛ خادم انصاری، م.ح. ؛ دلیرنقده، ب. ؛ مرتاض، ا.؛ احمدی پیدانی، ر. و برزگر، ا. (1379) بررسی بالینی، کشتارگاهی و آزمایشگاهی کمبود مس در گوسفندان ارومیه، مجله دانشکده دامپزشکی دانشگاه تهران. شماره 4، صفحات##: 70-67.
4- نوری، م. و راضی جلالی، م. (1379) کمبود مس ثانویه حاصل از مولیبدنوزیس در گوسفندان شهرستان مهاباد، مجله دانشکده دامپزشکی دانشگاه شهید چمران اهواز. سال 3، شماره 4، صفحات##: 23-15.
5- نوری، م. و راضی جلالی، م. (1380) علل کمبود مس در گوسفند در برخی از شهرستان های غرب کشور، خلاصه مقالات دوازدهمین کنگره دامپزشکی دانشگاه علوم پزشکی ایران، صفحه##: 3.
6- Bischoff, K.; Lamm, C.; Erb, H.N. and Hillebrandt, J.R. (2008) The effects of formalin fixation and tissue embedding of bovine liver on copper, iron, and zinc analysis. Journal of Veterinary Diagnostic Investigation 20: 220-224.##
7- Clawson, W.J.; Lesperance, A.L.; Bohman, V.R. and Layhee, D.C. (1972) Interrelationship of dietary molybdenum and copper on growth and tissue composition of cattle. Journal of Animal Science. 34: 516-520.##
8- Claypool, D.W.; Adams, F.W.; Pendell, H.W.; Hartmann, N.A. Jr. and Bone, J.F. (1975) Relationship between the level of copper in the blood plasma and liver of cattle. Journal of Animal Science. 41:911-914.##
9- Gengelbach GP, Ward JD, Spears J.W. (1996) Effect of dietary copper, iron, and molybdenum on growth and copper status of beef cows and calves. Journal of Animal Science. 72: 2722-2727.##
10- Gengelbach, G.P. and Spears, J.W. (1998) Effects of dietary copper and molybdenum on copper status, cytokine production, and humoral immune response of calves. Journal of Dairy Science. 81: 3286-92.##
11- Griffiths, L.M.; Loeffler, S.H.;  Socha, M.T.; Tomlinson, D.J.;  Johnson, A.B. (2007) Effects of supplementing complexed zinc, manganese, copper and cobalt on lactation and reproductive performance of intensively grazed lactating dairy cattle on the South Island of New Zealand. Animal Feed Science and Technology. 137: 69-83.##
12- Horowitz, A. J., and Elrick, K. A. (1985) Multielement analysis of rocks and sediments by wet digestion and atomic absorption spectroscopy. Varian Instruments at Work. 47: 31-60.##
13- Kessler, K.L; Olson,K.C; Wright, C.L.; Austin, K.J. ; Johnson, P.S. and Cammack, K.M. (2012) Effects of supplemental molybdenum on animal performance, liver copper##
concentrations, ruminal hydrogen sulfide concentrations, and the appearance of sulfur and molybdenum toxicity in steers receiving fiber-based diets. Journal of Animal Science. 90: 5005-5012.##
14- Laven, R.A.; Lawrence K.E. and Livesey, C.T. (2007) The assessment of blood copper status in cattle: a comparison of measurements of caeruloplasmin and elemental copper in serum and plasma. New Zealand Veterinary Journal. 55:171-176.##
15- Lesperance, A.L.; Bohman, V.R. nad Oldfield, J.E. (1985) Interaction of molybdenum, sulfate and alfalfa in the bovine. Journal of Animal Science. 60: 791-802.##
16- Majak, W.; Steinke, D.; McGillivray, J. and Lysyk, T. (2004) Clinical signs in cattle grazing high molybdenum forage. Journal of Range Management Archives. 57:269 -274.##
17- Marcilese, N.A.; Ammerman, C.B.; Valsecchi, R.M.; Dunavant, B.G. and Davis, G.K. (1970) Effect of dietary molybdenum and sulfate upon urinary excretion of copper in sheep. Journal of Nutrition. 100: 1399-405.##
18- Mason, J. (1986) Thiomolybdates: mediators of molybdenum toxicity and enzyme inhibitors. Toxicology. 42: 99-109.##
19- Mass, J. and Smith, B.P. (2009) Large Animal Internal Medicine. 4rd Ed. Mosby Co., St Louis, pp 887-889.##
20- Osweiler, G.D.; Carson, T.L.; Buck, W.B. and Van Gelder, G.A (1985) Clinical and Diagnostic Veterinary Toxicology. 3rd Ee.  Kendall Hunt Pub Co. Dubuque, Iowa. pp 87-103.##
21- Radostits, O.M.; Gay, C.C.; Hinchcliff, K.W. and Constable, P.D. (2007). Veterinary Medicine, 10th Ed. Saunders Elsevier, Edinburgh, pp1735-1755, 1771-1777, 1826-1828.##
22- Spears, J.W.  (2003). Trace mineral bioavailability in ruminants. Journal of Nutrition. 133:1506S-1509S.#
23- Spears, J.W.;  Kegley, E.B. and Mullis, L.A. (2004). Bioavailability of copper from tribasic copper chloride and copper sulfate in growing cattle. Animal Feed Science and Technology.116: 1-13.##
24- Suttle, N.F.  (2008) Relationships between the concentrations of trichloroacetic acid-soluble copper and caeruloplasmin in the serum of cattle from areas with different soil concentrations of molybdenum. Veterinary Record. 162: 237-240.##
25- Suttle, N.F. (2004) Assessing the needs of cattle for trace elements. In Practice. 26:553-561.##
26- Suttle, N.F. (2005) Assessing the needs of sheep for trace elements. In Practice. 27:474-483.##
27- Suttle, N.F. (2010) Mineral nutrition of livestock, 4th Edition. CABI, Oxfordshire, UK., pp. 255-305.##
28- Troy N. Trumble (2012) Equine pediatric medicine. In: Bernard, W.V. and Barr, B.S (ED). Joint and Skeletal Disorders. Manson Publishing Ltd., London, P. 277.##
29- Ward, G.M. (1978) Molybdenum toxicity and hypocuprosis in ruminants: a review. Journal of Animal Science. 46: 1078-1085.##
30- Ward, J.D. and Spears, J.W. (1997) Long-term effects of consumption of low-copper diets with or without supplemental molybdenum on copper status, performance, and carcass characteristics of cattle. Journal of Animal Science. 75: 3057-65.##
31- Ward, J.D.; Spears, J.W. and Kegley, E.B. (1993) Effect of copper level and source (copper lysine vs copper sulfate) on copper status, performance, and immune response in growing steers fed diets with or without supplemental molybdenum and sulfur. Journal of Animal Science. 71: 2748-2755.##