ملیتین، پپتید مشتق شده از زهر زنبور عسل برای درمان سرطان

نوع مقاله : مقاله مروری

نویسندگان

1 استادیار، بخش تحقیق و توسعه، موسسه تحقیقات واکسن وسرم سازی رازی، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج، ایران.

2 دانشگاه علوم پزشکی بابل دانشکده پزشکی گروه فارماکولوژی و توکسیکولوژی

چکیده

امروزه درمان رسطان یکی چالش های مهم در دنیای پزشکی است که نیازمند روش های درمان کارآمدتر است. بسیاری از بیوتوکسین های
تولید شده توسط حرشات مانند زنبورهای عسل برای کشف داروهای جدید برای درمان رسطان استفاده می شود. ملیتین، پپتید اصلی زهر زنبور عسل، یک کاندید جذاب برای درمان رسطان است. در مطالعات متعددی نشان داده شده است که این پپتید دارای اثرات ضد سرطان بالقوه ای در برابر رسطان های مختلف از جمله پستان، کبد، تخمدان، پروستات و... می باشد. با وجود داده های قانع کننده در مورد اثرات ضد سرطانی آن در انسان، به دلیل مسائل متعددی از جمله سمیت سلولی غیراختصاصی، متابولیزه شدن و فعالیت همولیتیک استفاده از آن با چالش هایی رو به رو شده است. در این مقاله درک فعلی از اثرات ضد رسطانی ملیتین در انواع مختلف رسطان ها و اطالعات موجود در ارتباط با مکانیسم احتاملی عمل ملیتین ارائه می گردد. این مطالعه پیرشفت های اخیر در زمینه اثرات و مکانیسم های ملیتین را طی سالهای 2023-2013 مرور می کند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Melittin, a honeybee venom derived peptide for the treatment of cancer

نویسندگان [English]

  • Ali Nazari 1
  • mojtaba zeinali 2
1 department of research and development, Razi Vaccine and Serum Research Institute, Karaj, iran.
2 Medical university of babol
چکیده [English]

Nowadays treatment of cancer is an important challenge in the medical world that needs better therapies. Many biotoxins produced by insects such as honey bees used to discover new anticancer drugs. Melittin, the main component of bee venom, is an attractive candidate for cancer therapy. It has been shown in several studies that this peptide has potential anti-cancer effects against various cancers such as breast, liver, ovarian, prostate, etc. Despite the convincing data against a variety of cancers, use of it  has faced challenges including non-specific cytotoxicity, degradation and hemolytic activity. Here we summarized the current anticancer effects of melittin in different types of cancer and the possible mechanism of melittin. This article reviews the recent studies of effects and mechanisms of melittin against cancer during the years 2013-2023.

کلیدواژه‌ها [English]

  • Melittin
  • Cancer
  • apoptosis
  • caspase pathway
  • hemolysis
1- Ali, M. 2012. Studies on bee venom and its medical uses. Int J Adv Res Technol 1: 69-83.
2- Ceremuga, M., M. Stela, E. Janik, L. Gorniak, E. Synowiec, T. Sliwinski, P. Sitarek, J. Saluk-Bijak and M. Bijak. 2020. Melittin—a natural peptide from bee venom which induces apoptosis in human leukaemia cells. Biomolecules 10: 247.
3- Chen, Q., W. Lin, Z. Yin, Y. Zou, S. Liang, S. Ruan, P. Chen, S. Li, Q. Shu and B. Cheng. 2019. Melittin Inhibits Hypoxia-Induced Vasculogenic Mimicry Formation and Epithelial-Mesenchymal Transition through Suppression of HIF-1/Akt Pathway in Liver Cancer. Evidence-Based Complementary and Alternative Medicine 2019.
4- Chen, Q., M. Paillard, L. Gomez, T. Ross, Y. Hu, A. Xu and E. J. Lesnefsky. 2011. Activation of mitochondrial μ-calpain increases AIF cleavage in cardiac mitochondria during ischemia–reperfusion. Biochemical and biophysical research communications 415: 533-538.
5- Dabbagh Moghaddam, F., I. Akbarzadeh, E. Marzbankia, M. Farid, L. Khaledi, A. H. Reihani, M. Javidfar and P. Mortazavi. 2021. Delivery of melittin-loaded niosomes for breast cancer treatment: an in vitro and in vivo evaluation of anti-cancer effect. Cancer Nanotechnology 12: 14.
6- Duffy, C., A. Sorolla, E. Wang, E. Golden, E. Woodward, K. Davern, D. Ho, E. Johnstone, K. Pfleger and A. Redfern. 2020. Honeybee venom and melittin suppress growth factor receptor activation in HER2-enriched and triple-negative breast cancer. NPJ precision oncology 4: 24.
7- Duguay, B. A. and J. R. Smiley. 2013. Mitochondrial nucleases ENDOG and EXOG participate in mitochondrial DNA depletion initiated by herpes simplex virus 1 UL12. 5. Journal of virology 87: 11787-11797.
8- Gao, D., J. Zhang, L. Bai, F. Li, Y. Dong and Q. Li. 2018. Melittin induces NSCLC apoptosis via inhibition of miR-183. OncoTargets and therapy: 4511-4523.
9- Gasanoff, E., Y. Liu, F. Li, P. Hanlon and G. Garab. 2021. Bee venom melittin disintegrates the respiration of mitochondria in healthy cells and lymphoblasts, and induces the formation of non-bilayer structures in model inner mitochondrial membranes. International Journal of Molecular Sciences 22: 11122.
10- Hematyar, M., M. Soleimani, A. Es-Haghi and A. Rezaei Mokarram. 2018. Synergistic co-delivery of doxorubicin and melittin using functionalized magnetic nanoparticles for cancer treatment: loading and in vitro release study by LC–MS/MS. Artificial cells, nanomedicine, and biotechnology 46: 1226-1235.
11- Huang, G., J. Mao, Z. Ji and A. Ailati. 2015. Stachyose-induced apoptosis of Caco-2 cells via the caspase-dependent mitochondrial pathway. Food & function 6: 765-771.
12- Jang, D. S., N. R. Penthala, E. O. Apostolov, X. Wang, P. A. Crooks and A. G. Basnakian. 2015. Novel cytoprotective inhibitors for apoptotic endonuclease G. DNA and cell biology 34: 92-100.
13- Jeong, Y.-J., Y. Choi, J.-M. Shin, H.-J. Cho, J.-H. Kang, K.-K. Park, J.-Y. Choe, Y.-S. Bae, S.-M. Han and C.-H. Kim. 2014. Melittin suppresses EGF-induced cell motility and invasion by inhibiting PI3K/Akt/mTOR signaling pathway in breast cancer cells. Food and Chemical Toxicology 68: 218-225.
14- Jin, Z., J. Yao, N. Xie, L. Cai, S. Qi, Z. Zhang and B. Li. 2018. Melittin constrains the expression of identified key genes associated with bladder cancer. Journal of Immunology Research 2018.
15- Karsisiotis, A. I., O. M. Deacon, B. S. Rajagopal, C. Macdonald, T. M. Blumenschein, G. R. Moore and J. A. Worrall. 2015. Backbone resonance assignments of ferric human cytochrome c and the pro-apoptotic G41S mutant in the ferric and ferrous states. Biomolecular NMR assignments 9: 415-419.
16- Kong, G. M., W. H. Tao, Y. L. Diao, P. H. Fang, J. J. Wang, P. Bo and F. Qian. 2016. Melittin induces human gastric cancer cell apoptosis via activation of mitochondrial pathway. World J Gastroenterol 22: 3186-3195.
17- Lai, D., S. Visser-Grieve and X. Yang. 2012. Tumour suppressor genes in chemotherapeutic drug response. Biosci Rep 32: 361-374.
18- Li, Y., N. Xu, W. Zhu, L. Wang, B. Liu, J. Zhang, Z. Xie and W. Liu. 2018. Nanoscale melittin@ zeolitic imidazolate frameworks for enhanced anticancer activity and mechanism analysis. ACS applied materials & interfaces 10: 22974-22984.
19- Lim, H. N., S. B. Baek and H. J. Jung. 2019. Bee venom and its peptide component melittin suppress growth and migration of melanoma cells via inhibition of PI3K/AKT/mTOR and MAPK pathways. Molecules (Basel, Switzerland) 24: 929.
20- Liu, E., T. Liang, X. Wang, S. Ban, L. Han and Q. Li. 2015. Apoptosis induced by farrerol in human gastric cancer SGC-7901 cells through the mitochondrial-mediated pathway. European Journal of Cancer Prevention 24: 365-372.
21- Liu, W.-W., Y. Liu, S. Liang, J.-H. Wu, Z.-C. Wang and S.-L. Gong. 2013. Hypoxia-and radiation‑induced overexpression of Smac by an adenoviral vector and its effects on cell cycle and apoptosis in MDA‑MB‑231 human breast cancer cells. Experimental and Therapeutic Medicine 6: 1560-1564.
22- Luther, C., U. Swami, J. Zhang, M. Milhem and Y. Zakharia. 2019. Advanced stage melanoma therapies: detailing the present and exploring the future. Critical reviews in oncology/hematology 133: 99-111.
23- Lv, C., Z. Zhang, T. Zhao, M. F. Han, D. P. Jia, L. Z. Su, F. Huang, F. Z. Wang, F. F. Fang and B. Li. 2019. The anti-tumour effect of Mel and its role in autophagy in human hepatocellular carcinoma cells. Am J Transl Res 11: 931-941.
24- Meier, F., B. Schittek, S. Busch, C. Garbe, K. Smalley, K. Satyamoorthy, G. Li and M. Herlyn. 2005. The RAS/RAF/MEK/ERK and PI3K/AKT signaling pathways present molecular targets for the effective treatment of advanced melanoma. Frontiers in Bioscience-Landmark 10: 2986-3001.
25- Nikodijević, D. D., M. G. Milutinović, D. M. Cvetković, M. Đ. Ćupurdija, M. M. Jovanović, I. V. Mrkić, M. Đ. Jankulović-Gavrović and S. D. Marković. 2021. Impact of bee venom and melittin on apoptosis and biotransformation in colorectal carcinoma cell lines. Toxin Reviews 40: 1272-1279.
26- Palm, N. W. and R. Medzhitov. 2013. Role of the inflammasome in defense against venoms. Proceedings of the National Academy of Sciences 110: 1809-1814.
27- Park, M. H., M. S. Choi, D. H. Kwak, K. W. Oh, D. Y. Yoon, S. B. Han, H. S. Song, M. J. Song and J. T. Hong. 2011. Anti‐cancer effect of bee venom in prostate cancer cells through activation of caspase pathway via inactivation of NF‐κB. The Prostate 71: 801-812.
28- Premratanachai, P. and C. Chanchao. 2014. Review of the anticancer activities of bee products. Asian Pac J Trop Biomed 4: 337-344.
29- Qi, J., Y. Chen, T. Xue, Y. Lin, S. Huang, S. Cao, X. Wang, Y. Su and Z. Lin. 2019. Graphene oxide-based magnetic nanocomposites for the delivery of melittin to cervical cancer HeLa cells. Nanotechnology 31: 065102.
30- Shin, J.-M., Y.-J. Jeong, H.-J. Cho, K.-K. Park, I.-K. Chung, I.-K. Lee, J.-Y. Kwak, H.-W. Chang, C.-H. Kim and S.-K. Moon. 2013. Melittin suppresses HIF-1α/VEGF expression through inhibition of ERK and mTOR/p70S6K pathway in human cervical carcinoma cells. PloS one 8: e69380.
31- Soliman, C., S. Eastwood, V. K. Truong, P. A. Ramsland and A. Elbourne. 2019. The membrane effects of melittin on gastric and colorectal cancer. PLoS One 14: e0224028.
32- Sung, H., J. Ferlay, R. L. Siegel, M. Laversanne, I. Soerjomataram, A. Jemal and F. Bray. 2021. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians 71: 209-249.
33- Tipgomut, C., A. Wongprommoon, E. Takeo, T. Ittiudomrak, S. Puthong and C. Chanchao. 2018. Melittin Induced G1 Cell Cycle Arrest and Apoptosis in Chago-K1 Human Bronchogenic Carcinoma Cells and Inhibited the Differentiation of THP-1 Cells into Tumour- Associated Macrophages. Asian Pac J Cancer Prev 19: 3427-3434.
34- Tipgomut, C., A. Wongprommoon, E. Takeo, T. Ittiudomrak, S. Puthong and C. Chanchao. 2018. Melittin induced G1 cell cycle arrest and apoptosis in chago-K1 human bronchogenic carcinoma cells and inhibited the differentiation of THP-1 cells into tumour-associated macrophages. Asian Pacific journal of cancer prevention: APJCP 19: 3427.
35- Trevaskis, N. L., L. M. Kaminskas and C. J. Porter. 2015. From sewer to saviour—targeting the lymphatic system to promote drug exposure and activity. Nature reviews Drug discovery 14: 781-803.
36- Waks, A. G. and E. P. Winer. 2019. Breast cancer treatment: a review. Jama 321: 288-300.
37- Yaacoub, C., M. Rifi, D. El-Obeid, H. Mawlawi, J.-M. Sabatier, B. Coutard and Z. Fajloun. 2021. The cytotoxic effect of Apis mellifera venom with a synergistic potential of its two main components—melittin and PLA2—on colon cancer HCT116 cell lines. Molecules (Basel, Switzerland) 26: 2264.
38- Yao, J., Z. Zhang, S. Li, B. Li and X. H. Wang. 2020. Melittin inhibits proliferation, migration and invasion of bladder cancer cells by regulating key genes based on bioinformatics and experimental assays. Journal of Cellular and Molecular Medicine 24: 655-670.
39- Ye, R., Y. Zheng, Y. Chen, X. Wei, S. Shi, Y. Chen, W. Zhu, A. Wang, L. Yang and Y. Xu. 2021. Stable loading and delivery of melittin with lipid-coated polymeric nanoparticles for effective tumor therapy with negligible systemic toxicity. ACS Applied Materials & Interfaces 13: 55902-55912.
40- Yu, R., M. Wang, M. Wang and L. Han. 2020. Melittin suppresses growth and induces apoptosis of non-small-cell lung cancer cells via down-regulation of TGF-β-mediated ERK signal pathway. Braz J Med Biol Res 54: e9017.
41- Yu, R., M. Wang, M. Wang and L. Han. 2020. Melittin suppresses growth and induces apoptosis of non-small-cell lung cancer cells via down-regulation of TGF-β-mediated ERK signal pathway. Brazilian Journal of Medical and Biological Research 54.
42- Zarrinnahad, H., A. Mahmoodzadeh, M. P. Hamidi, M. Mahdavi, A. Moradi, K. P. Bagheri and D. Shahbazzadeh. 2018. Apoptotic effect of melittin purified from Iranian honey bee venom on human cervical cancer HeLa cell line. International journal of peptide research and therapeutics 24: 563-570.
43- Zhang, B., Z. Xu, Y. Zhang, X. Shao, X. Xu, J. Cheng and Z. Li. 2015. Fipronil induces apoptosis through caspase-dependent mitochondrial pathways in Drosophila S2 cells. Pesticide biochemistry and physiology 119: 81-89.
44- Zhang, S., X. Lv, L. Li, Y. Luo, H. Xiang, L. Wang and Y. Li. 2021. Melittin inhibited glycolysis and induced cell apoptosis in cisplatinresistant lung adenocarcinoma cells via TRIM8. Biocell 45: 167.
45- Zhou, J., C. Wan, J. Cheng, H. Huang, J. F. Lovell and H. Jin. 2021. Delivery strategies for melittin-based cancer therapy. ACS Applied Materials & Interfaces 13: 17158-17173.