مطالعه ترانسکریپتومی lncRNAها در مرغ بومی اصفهان و تجاری راس

نوع مقاله : مقاله کامل

نویسندگان

1 گروه علوم دامی، دانشکده علوم دامی و صنایع غذایی، دانشگاه علوم کشاورزی و منابع طبیعی خوزستان، ملاثانی، ایران.

2 گروه علوم دامی، دانشکده علوم دامی و صنایع غذایی، دانشگاه کشاورزی و منابع طبیعی خوزستان، ملاثانی، ایران

3 پژوهشکده آبزی پروری آبهای جنوب کشور، موسسه تحقیقات علوم شیلاتی کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی، اهواز، ایران

چکیده

     به کمک روش RNA-seq می‌توان اطلاعات کاملی در خصوص شناسایی ژن‌ها بدست آورد که نتایج آن ممکن است در ژنتیک و اصلاح دام و طیور سودمند باشد. تاکنون مطالعات کمی در خصوص استفاده از این روش در ارزیابی ترانسکریپتوم طیور بومی گزارش شده است، با توجه به اهمیت lncRNAها در فرآیندهای بیولوژیکی، در مطالعه حاضر به بررسی lncRNAهای حاصل از ترانسکریپتوم مرغ بومی اصفهان و سویه تجاری راس 708 و تفاوت بیان آن‌ها پرداخته شده است. در این مطالعه با استفاده از توالی‌یابی نسل جدید، 568 lncRNA  شناسایی شد که تغییرات بیان 116 lncRNA معنی‌دار بود (05/0 P-value ≤ P-value). نتایج نشان داد lncRNA های دارای بیان متفاوت در مسیر‌های بیولوژیکی مرتبط با متیلاسیون لایزین و هیستون، فعال‌سازی لکوسیت‌های میلوئیدی، تنظیم مثبت تولید سایتوکین و تنظیم فعال‌سازی لنفوسیت‌ها نقش دارند. آنالیز عملکرد مولکولی این ژن‌ها نشان داد فعالیت پروتئین تیروزین کیناز غیر غشایی، پروتئین متیل ترانسفراز، متیل ترانسفراز وابسته به S-آدنوزیل متیونین، و انتقال گروه‌های یک کربنی و اتصال گیرنده سیگنال به طور معنی‌داری غنی می‌شوند. بر اساس نتایج حاصل، lncRNAهایی که تفاوت بیان معنی‌داری در دو گروه بومی و تجاری دارند با مسیرهای سیستم ایمنی و متیلاسیون مرتبط می‌باشند که می‌توانند به عنوان بیومارکر استفاده شوند.  

کلیدواژه‌ها


عنوان مقاله [English]

Transcriptomic Study of lncRNAs in Native Isfahan and Ross Commercial Chicken

نویسندگان [English]

  • Mahnosh Askari Manesh 1
  • Jamal Fayazi 1
  • Mohammad Taghi Beigi Nassiri 2
  • Ayeh Sadat Sadr 3
1 Department of Animal Science, Animal Science and Food Technology Faculty, Agricultural Sciences and Natural Resources, University of Khuzestan, Mollasani, Iran
2 Department of Animal Science, Animal Science and Food Technology Faculty, Agricultural Sciences and Natural Resources University of Khuzestan, Mollasani, Iran
3 South of Iran Aquaculture Research Institute, Iranian Fisheries Science Research Institute (IFSRI), Ag-ricultural Research Education and Extension Organization (AREEO), Ahvaz, Iran
چکیده [English]

 Based on the RNA-seq method, a thorough set of information can be obtained from the identification of geneswhich the results  may be beneficial  in the genetics and breeding of livestock and poultry. So far, few studies have been reported regarding the use of this method in the evaluation of native poultry transcriptome. Considering the importance of lncRNAs in biological processes, the present study has investigated the lncRNAs from the transcriptome of native Isfahan  chicken and the commercial Ross 708 strain as well as differences  in their expression. In this study using next generation sequencing, 568 lncRNAs were identified, out of which the expression changes of 116 lncRNAs were meaningful (P-value ≤0.05). The results showed differently-expressed incRNAs which are associated with the biological pathways including histone and lysine methylation, myeloid leukocyte activation, positive regulation of cytokine production ,, , and regulation of lymphocyte activation. The analysis of molecular functions of the genes indicated the activity of non-membrane-spanning tyrosine kinase, protein methyltransferase, S-adenosylmethionine-dependent methyltransferase, and transfer of one-carbon groupsacting on a protein, and signaling receptor binding are enhanced meaningfully. Based on the results, lncRNAs that vary in expression between native and commercial groups are associated with immune and methylation pathways, and can be used as biomarkers.

کلیدواژه‌ها [English]

  • Gene expression pattern
  • lncRNA
  • Native chicken breed
  • Ross strain
  • RNA-seq
1-Albooshoke, S. N. and M. R. Bakhtiarizadeh.2019. Identification of LncRNAs related to growth of chicken’s breast muscle using RNA-seq. Animal Production. 21: 165-180. (In Farsi).
2- Alsafar, A. and F. Khalil. 2015. Why poultry welfare in Kuwait is an obstacle to trade? In: The 5th International Conference on Sustainable Animal Agriculture for Developing Countries. Pattaya, Thailand. pp. 711- 714.
3- Andrew, S. 2010. FASTQC: A quality control tool for high throughput sequence data. Bobraham Bioinformatics. https://bioinformatics.babraham.ac.uk/projects/fastqc/. Accessed 7 July 2011.
4- Au, P. C. K., Zhu, Q.H., E.S. Dennis and M. B. Wang. 2011. Long non-coding RNA-mediated mechanisms independent of the RNAi pathway in animals and plants. RNA Biology. 8(3):404-414. 
5- Bolger, A. M., M. Lohse and B. Usadel. 2014. Trimmomatic: A flexible trimmer for Illumina Sequence Data. Bioinformatics. 30:2114-2120.
6- Dennis, G. B., Sherman, T., Hosack, D.A., Yang, J., Gao, W., H. C. Lane and R. A. Lempicki. 2003. DAVID: database for annotation, visualization, and integrated discovery. Genome biology .4:617-628.
7- Guo, J. C. and Y. Zhao.2019.  CNIT: a fast and accurate web tool for identifying protein-coding and long non-coding transcripts based on intrinsic sequence composition. Nucleic acids research. 47:516-522.
8- Haerty, W. and C.P. Ponting. 2015. Unexpected selection to retain high GC content and splicing enhancers within exons of multiexonic lncRNA loci. RNA society journal. 21(3):333-346.
9-He, Y., Ding, Y., Zhan, F., Zhang, H., Han, B., Hu, G., Zhao, K., Yang, N., Yu, Y., L. Mao and J. Song. 2015. The conservation and signatures of lincRNAs in Marek’s disease of chicken. Scientific Reports. 5:15184.
10-Hesani, ZH., Nasiry, M.R., Bakhtiarizadeh, M.R., M. Tahmorespur and A. Javadmanesh. 2017. Gene Expression Analysis on Apoptosis network and design it in Esfahani and Ross Breeds. Iranian Journal of Animal Science Research. (10):117-130. (In Farsi).
11- Karimi, P., Bakhtiarizadeh, M.R., A. Salehi and H.R. Izadnia. 2022. Transcriptome analysis reveals the potential roles of long non coding RNAs in feed efciency of chicken. Scientific reports.12:2558.
12- Khalil, A. M., Guttman, M., Huarte, M., Garber, M., Raj, A., Morales, D.R., Thomas, K., Presser, A., Bernstein, B.E., A. Van Oudenaarden, and A. Regev. 2009. Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proceedings of the National Academy of Sciences of the United States of America .106(28): 11667-11672.
13- Kim, D., J.M. Paggi and C. Park. 2019. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nature Biotechnology.  37(8): 907–915.
14- Kong, L., Zhang, Y., Ye, Z.Q., Lio, X.Q., Zhao, S.Q., L. Wei and G. Gao. 2007. CPC: Assess the protein-coding potential of transcripts using sequence features and support vector machine. Nucleic acids research. 35: 345- 349.
15-Lamont, S. 2006. Integrated, whole-genome approaches to enhance disease resistance in poultry. Proceedings of the 8th World Congress on Genetics Applied to Livestock Production, Belo Horizonte, Minas Gerais, Brazil. Instituto Prociência. 1-7.
16- Li, A., J. Zhang and Z. Zhou. 2014. PLEK: A tool for predicting long non-coding RNAs and messenger RNAs based on an improved k-mer scheme. BMC bioinformatics. 15 (1): 311-321.
17-Li, H., Cui, P., Fu, X., L. Zhang and X. Yang. 2021. Identification and analysis of long non-coding RNAs and mRNAs in chicken macrophages infected with avian infectious bronchitis coronavirus. BMC Genomics. (22): 67-80.
18-Pértille, F., Brantsæter, M., Nordgreen, J., Coutinho, L.L., Janczak, A.M., P. Jensen and C. Guerrero-Bosagna . 2017.  DNA methylation profiles in red blood cells of adult hens correlate with their rearing conditions. Journal of Experimental Biology. (19):3579-3587.
19-Qiu, L., Li, Z., Chang, G., Bi. Y., X. Liu and L. Xu. 2017.  Discovery of novel long non-coding RNAs induced by subgroup J avian leukosis virus infection in chicken. Developmental and Comparative Immunology. 76:292-302. 
20-Ren, T., Li, Z., Zhou, Y., Liu, X., Han, R., Y. Wang and X. Kang. 2018. Sequencing and characterization of lncRNAs in the breast muscle of Gushi and Arbor Acres chickens. Genome. 61(5): 337-347.
21-Sadr, A.S., Nassiri, M.R., Salami, S.A.R., Bakhtiarizadeh, M.R., M. Tahmoorespur and A.R. Shafeinia. 2017. RNAseq Reveals Novel and Differentially Expressed Isoforms In Native and Commercial Poultry. Journal of Cell and Molecular Research. 9 (1):16-22
22- Trapnell, C., Hendrickson, D., Sauvageau, S., Goff, L., J. L. Rinn and L. Pachter. 2013.  Differential analysis of gene regulation at transcript resolution with RNA-seq. Nature Biotechnology. 31:46-53.
23-Trapnell, C., Williams, B.A., Pertea, G., Mortazavi, A., G. Kwan and M. J. van Baren. 2010. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nature Biotechnology. 28: 511–515. 
24- Wucher, v. 2017. FEElnc: a tool for long non – coding RNA annotation and its application to the dog transcriptome. Nucleic Acids Research. 45(8):e57.
25-You, Z., Zhang, Q., Liu, C., Song, J., Y. Ning and L. Lian. 2019. Integrated analysis of lncRNA and mRNA repertoires in Marek’s disease infected spleens identifies genes relevant to resistance. BMC Genomics. 245-260.