بررسی اثر ضدباکتریایی اسانس نعنا، زیره ی سبز و پپتید باکتریوسین انتروسین P بر روی برخی باکتری‌های مولد ورم پستان گاو در شرایط آزمایشگاهی

نوع مقاله : مقاله کامل

نویسندگان

1 گروه علوم دامی، دانشگاه فردوسی مشهد، ایران

2 گروه علوم پزشکی شاهرود، ایران

چکیده

از جمله بیماری‌هایی که علاوه بر خسارات و هزینه‌های زیاد منجر به تهدید سلامت انسان نیز می‌گردد، می‌توان به ورم پستان دام  اشاره کرد. استفاده از آنتی‌بیوتیک‌ها برای درمان این بیماری علاوه بر فواید، مضررات زیادی همچون ایجاد سویه‌های باکتریایی مقاوم به آنتی‌بیوتیک و ایجاد بقایای دارویی در شیر را در این صنعت ایجاد می‌کند. امروزه استفاده از جایگزین‌های طبیعی همچون پپتیدهای ضد میکروبی و اسانس‌های گیاهی بجای آنتی‌بیوتیک موردتوجه قرار گرفته‌اند. هدف از این پژوهش بررسی و مقایسه‌‌ی اثرات ضد باکتریایی دو پپتید باکتریوسین اینتروسین p و تاناتین با دو اسانس گیاهی نعناع و زیره سبز می‌باشد. پپتید نوترکیب باکتریوسین انتروسین p در سلول‌های تخمدان همستر چینی (CHO) بیان شد. فرآیند اسانس‌گیری نیز توسط دستگاه کلونجر انجام شد. در نهایت تست حداقل غلظت مهارکنندگی (MIC) و حداقل غلظت کشندگی (MBC) بر روی باکتری‌ها صورت گرفت. نتایج نشان داد دو پپتید باکتریوسین اینتروسین p و تاناتین دارای اثرات ضد باکتری قوی‌تری در غلظت‌های کمتری نسبت به دو اسانس نعناع سبز و زیره سبز بر روی باکتری‌های Staphylococcus aureus ، E.coli 0157 H7 و E.coli هستند. به طوریکه باکتری Staphylococcus aureus نسبت به پپتید باکتریوسین انتروسین p و E.coli 0157 H7 نسبت به پپتید تاناتین حساسیت بیشتری داشتند. از آنجاییکه از مزایای استفاده از پپتیدها نسبت به اسانس‌ها می‌توان به مقاومت نسبت به حرارت، اکسیداسیون و امکان دست‌ورزی از طریق اتصال به سایر پپتیدها جهت افزایش فعالیت آن اشاره کرد، امید است بتوان از این پپتیدها در آینده به‌عنوان داروی جایگزین آنتی‌بیوتیک‌ها در درمان بیماری‌های دامی از جمله ورم پستان دام استفاده کرد.

کلیدواژه‌ها


عنوان مقاله [English]

Antibacterial effect of mentha spicata, cuminum cyminum essential oils and bacteriocin enterocin P peptide on some bovine mastitis bacteria in vitro

نویسندگان [English]

  • Z. Mousavi 1
  • F. Mohammadi 1
  • A. Tanhaeian 2
1 Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
2 Shahroud University of Medical Sciences
چکیده [English]

Nowadays, milk and dairy products form an important part of the requirements of the people around the world. Animal diseases have important impacts on animal productivity and welfare and on human health. Mastitis is the most common disease in dairy cattle. Unfortunately, using common antibiotics to treat animal infection is increasing in which leads to undesirable side effects such as antibiotic residuals in animal products and occurrence bacterial resistance to antibiotics. Hence, the use of natural alternatives such as antimicrobial peptides and essential oils has been considered. In this study the antibacterial effects of two bacteriocin enterocin P and thanatin peptides with two essential oils of mentha spicata and cuminum cyminum against some mastitis pathogens were evaluated. The recombinant bacteriocin enterocin p peptide were expressed in CHO cells. The extraction of mentha spicata and cuminum cyminum essential oils was performed by Clevenger apparatus. Finally, the minimum inhibitory concentration and minimum bactericidal concentration were tested on bacteria. The results have shown that the two peptides have stronger antibacterial effects at lower concentrations than the two essential oils. Staphylococcus aurous and Escherichia coli were sensitive to bacteriocin enterocin p and thanatin peptide respectively. Since the benefits of using peptides over essential oils associated with their high thermal stability, resistant to oxidation and the ability of peptide modification, it is hope that antimicrobial peptides provide an excellent potential strategy for treating animal diseases in future.

کلیدواژه‌ها [English]

  • Mastitis
  • MBC
  • MIC
  • Bacteriocin Enterocin P
  • Thanatin
1-Amer, S., Gálvez, F. L. A., Fukuda, Y., Tada, C., Jimenez, I. L., Valle, W. F. M., & Nakai, Y. (2018). Prevalence and etiology of mastitis in dairy cattle in El Oro Province, Ecuador. Journal of Veterinary Medical Science, 17-0504.
2-Javadmanesh, A., Mousavi, Z., Tanhaeian, A., Azghandi, M. (2020). Comparison of antimicrobial activity of thanatin peptide with cinnamon and oregano essential oils on some pathogenic bacteria. Veterinary Researches & Biological Products, 33(1), 47-53.In persion.
3-ZZare Bidaki, M., Arab, Mina., Khazaei, M., Afkar, E. Anti-bacterial effect of Mentha spicata L. ťessenceon eight standard species of gastrointestinal pathogens. Scientific Journal of Birjand University of Medical Sciences, 21 (3), 274-282. In persion
4-Ekhtelat, M., Bahrani, Z., Siahpoosh, A., & Ameri, A. (2019). Evaluation of antibacterial effects of Mentha spicata L., Cuminum cyminum L. and Mentha longifolia L. essential oils individually and in combination with sodium benzoate against Escherichia coli O157: H7 and Listeria monocytogenes. Jundishapur Journal of Natural Pharmaceutical Products, 14 (3)3
5-Petretto, G. L., Fancello, F., Bakhy, K., Faiz, C. A., Sibawayh, Z., Chessa, M., ... & Pintore, G. (2018). Chemical composition and antimicrobial activity of essential oils from Cuminum cyminum L. collected in different areas of Morocco. Food bioscience, 22, 50-58.
6.Abbaszadegan, A., A., Gholami, Y., Ghahramani, R., Ghareghan, M., Ghareghan, A., Kazemi and Y., Ghasemi. (2016). Antimicrobial and cytotoxic activity of Cuminum cyminum as an intracanal medicament compared to chlorhexidine gel. Iranian Endodontic journal 11(1), 44.‏
7.Agrawal, K.K., S.P.S., Khanuja, A., Ateeque, T.R., Santha Kumar, V.K., Gupta and S., Kumar. 2002. Antimicrobial activity profiles of the two enantiomers of limonene and carvone isolated from the oils of Mentha spicata and Anthum sowa. Flavour and Fragrance Journal 17(1): 59-63.
8.Bakkali, F., S., Averbeck, D., Averbeck, M., Idaomar. 2008. Biological effects of essential oils--a review. Food Chem Toxicol 46(2): 446-75.
9.Barkema, H.W., M.J., Green, A.J., Bradley, R.N. Zadoks. 2009. Invited review: The role of contagious disease in udder health. Journal of Dairy Science 92: 4717-4729.
10.Bolourchi, M., D.M.R., Mokhber, R., Kasravi, E.A., E.A., Moghimi, P., Hovareshti. 2008. An estimation of national average of milk somatic cell count and production losses due to subclinical mastitis in commercial dairy herds in Iran. Journal of Veterinary Research 63:263-266.
11.Cintas, L. M., P., Casaus, L. S., Håvarstein and I. F., Nes. 1997. Biochemical and genetic S. Herna´ndez, P. E., genetic characterization of enterocinP, a novel Enterococcus faecium P13 spectrum. Applied and Environmental Microbiology 63:4321–4330
12.Cirioni, O., G., Wu, L., Li, F., Orlando, C., Silvestri, R., Ghiselli and M., Provinciali. 2011. S-thanatin in vitro prevents colistin resistance and improves its efficacy in an animal model of Pseudomonas aeruginosa sepsis. Peptides 32(4), 697-701.
13.Diarra, M.S., D., Petitclerc and P., Lacasse. 2002. Effect of lactoferrin in combination with penicillin on the morphology and the physiology of Staphylococcus aureus isolated from bovine mastitis. Journal of Dairy Science 85:1141-1149.
14.Fehlbaum, P., P., Bulet, S., Chemysh. 1996. Structure activity analysis of thanatin, a 21-residue inducible insect defense
peptide with sequence homology to frog skin antimicrobial peptides.
Proceedings of the National Academy of Sciences 93:1221–1225.
15.Feng, X., C., Liu, J., Guo, X., Song, J., Li, W., Xu and Z., Li. 2012. Recombinant expression, purification, and antimicrobial activity of a novel hybrid antimicrobial peptide LFT33. Applied microbiology and biotechnology 95(5), 1191-1198.
16.Feo, V.D., A.I., Ricciardi, D., Biscardi and F., Senatore. 1998. Chemical composition and antimicrobial screening of the essential oil of Minthostachys verticillate (Griseb) Ep1 (Lamiaceae). Journal of Essential oil Research 10(1): 61-65.
17.Flamin, G., P.L., Cioni, R., Pleio, I., Morlli and L., Panizzi. 1999. Antimicrobial activity of essential oil of Calamintha nepta and its constituent pulegon against bacteria and fungi. Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives 13(4): 349-351.
18.Franz, C. M., M. J., Van Belkum, W. H., Holzapfel, H., Abriouel and A., Gálvez. 2007. Diversity of enterococcal bacteriocins and their grouping in a new classification scheme. FEMS microbiology reviews 31(3), 293-310.
19.Guler, L., U., Ok, K., Gunduz, Y., Gulcu and H. H., Hadimli. 2005. Antimicrobial susceptibility and coagulase gene typing of Staphylococcus aureus isolated from bovine clinical mastitis cases in Turkey. Journal of Dairy Science 88:3149-3154.
20.Hancock, R. E. W. and A., Patrzykat. 2002. Clinical development of cationic antimicrobial peptides: from natural to novel antibiotics. Current drug targets-Infectious disorders 2(1), 79-83.
21.Hou, Z., F., Da, B., Liu, X., Xue, X., Xu, Y., Zhou ans M., Jia. 2013. R-thanatin inhibits growth and biofilm formation of methicillin-resistant Staphylococcus epidermidis in vivo and in vitro. Antimicrobial agents and chemotherapy 57(10), 5045-5052.
22.Hu, C. B., W., Malaphan, T., Zendo, J., Nakayama and K., Sonomoto. 2010. Enterocin X, a novel two-peptide bacteriocin from Enterococcus faecium KU-B5, has an antibacterial spectrum entirely different from those of its component peptides. Applied and environmental microbiology 76(13), 4542-4545
23.Iacobellis, N. S., P., Lo Cantore, F., Capasso and F., Senatore. 2005. Antibacterial activity of Cuminum cyminum L. and Carum carvi L. essential oils. Journal of agricultural and food chemistry 53(1): 57-61.
24.Kalmus, P., B., Aasmae, A., Karssin, T., Orro, K., Kask. 2011. Udder pathogens and their resistance to antimicrobial agents in dairy cows in Estonia. Journal of Acta Veterinaria Scandinavica, 53:4.
25.Kumar, P., S., Mishra, A., Malik and S., Satya. 2011. Insecticidal properties of Mentha species: A review. Industrial Crops and Products 34(1): 802-17.
26.Le, T. N., T. H., Do, T. N., Nguyen, N. T., Tran, S. O., Enfors and H., Truong. 2014. Expression and Simple Purification Strategy for the Generation of Anti-microbial Active Enterocin P from Enterococcus faecium Expressed in Escherichia coli ER2566. Iranian Journal of Biotechnology 12(4), 17-25.
27.Liu, Y., J., Luo, C., Xu, F., Ren, C., Peng, G., Wu and J., .Zhao. 2000. Purification, characterization, and molecular cloning of the gene of a seed-specific antimicrobial protein from pokeweed. Plant Physiology 122 (4):1015-1024.
28.Marshall, S.H. and G., Arenas. 2003. Antimicrobial peptides: A natural alternative to chemical antibiotics and a potential for applied biotechnology. Electronic Journal of Biotechnology 6(3):271-84.
29.Naigre, R., P., Kalck, C., Paques, I., Roux and G., Michel. 1996. Comparison of the antimicrobial properties of monoterpens and their carbonylated products. Journal of Plant Medicine 62(3): 275-277.
30.Nam, H.M., S.K., Lim, H.M., Kang, J.M., Kim, J.S., Moon, K.C., Jang, Y.S., Joo and S.C., Jung. 2009. Prevalence and antimicrobial susceptibility of gram-negative bacteria isolated from bovine mastitis between 2003 and 2008 in Korea. Journal of dairy science 92 (5): 2020-2026.
31.Nurdin, E., 2006. Effect of sunflower and Bioplus against milk production and dairy cow rations efficiency FH. Agrisistem J., 2: 59-62.
32.Nurdin, E., 2007. [The effect of supplementation sunflowers (Helianthus annuus L.) and BIOPLUS in the solid nun fat, total solid and milk acidity of sub-clinical mastitis's holstein dairy cows]. J. Anim. Prod., 9: 79-81.
33.Nurdin, E., 2007. Effect of sunflower and probiotics cob decline against mastitis in dairy cattle degree FH patients with subclinical mastitis. J. Trop. Livestock Dev., 32: 76-79.
34.Oliver, S. P. and S. E., Murinda. (2012). Antimicrobial resistance of mastitis pathogens. Veterinary Clinics: Food Animal Practice 28(2), 165-185.
35.Pagès, J. M., J. L., Dimarcq, S., Quenin and C., Hetru. 2003. Thanatin activity on multidrug resistant clinical isolates of Enterobacter aerogenes and Klebsiella pneumoniae. International journal of antimicrobial agents 22(3), 265-269.
36.Pirestani, A., Galamkari, G., Eghbalsaied, S., Jafarpour, M., & Por, N. G. (2013). The effect of Mentha piperita, peppermint and Matricaria chamomilla extracts on agents causing Bovine mastitis in vitro condition. Technical Journal of Engineering and Applied Sciences, 24, 364-3646.
37.Redwan, E.M., N.A., El-Baky, A.M., Al-Hejin, M.N., Baeshen, H.A., Almehdar, A., Elsaway, A.B., Gomaa, S.B., Al-Masaudi, F.A., Al-Fassi, I.E., AbuZeid and V.N., Uversky. 2016. Significant antibacterial activity and synergistic effects of camel lactoferrin with antibiotics against methicillin-resistant Staphylococcus aureus (MRSA). Journal of Research Microbiology 167:480-91.
38.Rozman,T. and B., Jersec. 2009. Antimicrobial activity of rosemary extracts (Rosmarinus officinalis against different species of Listeria. Acta agriculturae Slovenica 1:14-20
39.Ruegg PL. 2005. Relationship between bulk tank milk somatic cell count and antibiotic residues. In Proceeding of the 2005 National Mastitis Council Meeting. National Mastitis Council 28 –35.
40.Shetty, R. S., R. S., Singhal and P. R., Kulkarni. 1994. Antimicrobial properties of cumin. World Journal of Microbiology and Biotechnology 10(2), 232-233.
41.Tanhaeian, A., M.S., Damavandi, D., Mansury and K., Ghaznini. 2019. Expression in eukaryotic cells and purification of synthetic gene encoding enterocin P: a bacteriocin with broad antimicrobial spectrum. AMB Express 9(1), 6.
42.Vizioli, J. and M., Salzet. 2003. Antimicrobial peptides: new weapons to control parasitic infections. Journal of Trends in Parasitology 18.
43.Wang, S., X., Zeng, Q., Yang and S., Qiao. 2016. Antimicrobial Peptides as Potential Alternatives to Antibiotics in Food Animal Industry. International journal of molecular sciences 17(5):603.
44.Wu, G., X., Li, X., Fan, H., Wu, S., Wang, Z., Shen and T., Xi. 2011. The activity of antimicrobial peptide S-thanatin is independent on multidrug-resistant spectrum of bacteria. Peptides 32(6), 1139-1145
45.Zhou, X. and X. Wang. 2011. Characterization of pathogenic or non-pathogenic Enterococcus faecalis isolated from lambs from Xinjiang, a remove North-west province of China. African Journal of Microbiology Research 5(18): 2827-2833.
46.Zhou, Y., R., Zhao, B., Ma, H., Gao, X., Xue, D., Qu and Z., Hou. 2016. Oligomerization of RNAIII-inhibiting peptide inhibits adherence and biofilm formation of methicillin-resistant Staphylococcus aureus in vitro and in vivo. Microbial Drug Resistance 22(3), 193-201.