جداسازی و بررسی خاصیت ضدباکتریایی اکتینوباکتریا از کود الاغ

نوع مقاله : مقاله کامل

نویسندگان

1 دانشکده پیرادامپزشکی، دانشگاه ایلام

2 گروه میکروبیولوژی، دانشکده پیرادامپزشکی، دانشگاه ایلام

چکیده

فراورده‌های میکروبی نقش مهمی در هضم و جذب مواد، افزایش ایمنی و مقاومت در برابر بیماری‌ها دارند. این فراورده‌ها به وفور به وسیله اکتینوباکتریا تولید می‌گردند. پژوهش حاضر با هدف جداسازی اکتینوباکتریا، بررسی اولیه خاصیت ضد‌باکتریایی و شناسایی ژن‌های مولد ترکیبات فعال زیستی از کود الاغ انجام گرفت. برای این منظور نمونه‌های کود الاغ بر روی محیط استارچ کازئین کشت داده شدند، سپس جدایه‌های اکتینوباکتریا با استفاده از روش مولکولی PCR شناسایی شده و خاصیت ضد باکتریایی آن‌ها با استفاده از روش انتشار از چاهک در آگار بررسی شد. همچنین، این جدایه‌ها به منظور غربالگری ژن‌های PKS I ،PKS II و NRPS مورد بررسی قرار گرفتند. از 92 جدایه اکتینوباکتریایی، 66 جدایه دارای فعالیت آنتاگونیستی در برابر باکتری‌های تست بودند. از این تعداد، 61 جدایه (92 درصد) استافیلوکوکوس اورئوس، 45 جدایه (68 درصد) اشریشیا کلی، 47 جدایه (71 درصد) باسیلوس سرئوس و چهار جدایه (6 درصد) سودوموناس اروجینوزا را مهار رشد کردند. نتایج حاصل از آنالیز مولکولی ژن‌های PKS I و PKS II و NRPS برای 30 جدایه اکتینوباکتریایی انتخاب شده از میان 92 جدایه مذکور نشان داد که 18 جدایه (54 درصد) حاوی ژن NRPS، هفت جدایه (23 درصد) حاوی ژن PKS I و نه جدایه (30 درصد) حاوی ژن PKS II بودند. نتایج این پژوهش بیانگر غنی بودن کود الاغ از اکتینوباکتریای تولید‌کننده ترکیبات فعال زیستی با خاصیت ضد‌باکتریایی و حاوی درصد قابل توجه از ژن‌های PKS I،  
 PKS II و NRPS است.

کلیدواژه‌ها


عنوان مقاله [English]

Isolation and evaluation of antibacterial activity of Actinobacteria from donkey manure

نویسندگان [English]

  • S. Yusefinejad 1
  • F. Pourahmad 2
  • M. Nemati 2
1 Department of Microbiology, Faculty of Veterinary Sciences, Ilam University, Ilam, Iran.
2 Department of Microbiology, Faculty of Vterinary Sciences, Ilam University, Ilam, Iran
چکیده [English]

Microbial products play an important role in digestion and absorption of substances, increase immunity and disease resistance. These products are abundantly produced by Actinobacteria. The aim of this study was to isolate Actinobacteria, to investigate the antibacterial properties and to identify the genes that produce bioactive compounds from donkey manure. For this purpose, donkey manure samples were cultured on the casein stretch medium, then Actinobacteria isolates were identified by PCR and their antibacterial properties were investigated by agar well diffusion method. These isolates were also screened for PKS I, PKS II and NRPS genes. Of 92 Actinobacterial isolates, 66 isolates had antagonistic activity against test bacteria. Of these, 61 isolates (92%) inhibited Staphylococcus aureus, 45 isolates (68%) Escherichia coli, 47 isolates (71%) Bacillus cereus and four isolates (6%) inhibited Pseudomonas aeruginosa. The results of molecular analysis of PKS I, PKS II and NRPS genes for 30 isolates of Actinobacteria selected from the 92 isolates showed that 18 isolates (54%) contained NRPS gene, seven isolates (23%) enclosed PKS I gene and nine isolates (30%) contained PKS II gene. The results of this study indicate that donkey manure is rich in Actinobacteria producing bioactive compounds with antibacterial properties and contain a significant percentage of PKS I, PKS II and NRPS genes.

کلیدواژه‌ها [English]

  • Donkey manure
  • Actinobacteria
  • Antibacterial activity
  • PKS I
  • PKS II and NRPS genes
1. Ayuso-Sacido A, Genilloud O. 2005. New PCR primers for the screening of NRPS and PKS-I systems in actinomycetes: detection and distribution of these biosynthetic gene sequences in major taxonomic groups. Microbial Ecology 49:10–24.
2. Azman, A. S., I.S. Othman, S. Velu, K. G. Chan and L. H. Lee. 2015. Mangrove rare Actinobacteria: taxonomy, natural compound, and discovery of bioactivity. Frontiers in Microbiology 6: 856. 
3. Carvalho T. and S. Van Dersand. 2016. Evaluation of antimicrobial activity of the endophytic actinomycete R18 (6) against multi-resistant Gram-negative bacteria. Annals of the Brazilian Academy of Sciences 88(1): 155-163.
4. Coombs, J. T. and C. M. Franco. 2003. Isolation and identification of Actinobacteria from surface-sterilized wheat roots. Applied and Environmental Microbiology 69(9): 5603-5608.
5. Dhaneesha M., C. B. Naman, K. P. Krishnan, R. K. Sinha, P. Jayesh, V. Joseph, and T. P. Sajeevan. 2017. Streptomyces artemisiae MCCB 248 isolated from Arctic fjord sediments has unique PKS and NRPS biosynthetic genes and produces potential new anticancer natural products. 3 Biotech 7(1): 32.
6. Engelhardt, K., K. F. Degnes, M. Kemmler, H.  Bredholt, E. Fjærvik, G. Klinkenberg, and S. B. Zotchev. 2010. Production of a new thiopeptide antibiotic, TP-1161, by a marine Nocardiopsis species. Applied and Environmental Microbiology 76 (15): 4969-4976.
7. Gebreyohannes G, F. Moges, S. Sahile, N. Raja. 2013. Isolation and characterization of potential antibiotic producing actinomycetes from water and sediments of Lake Tana, Ethiopia. Asian Pacific Journal of Tropical Biomedicine 3:426–35.
8. Genilloud O. 2017. Actinomycetes: still a source of novel antibiotics. Natural product reports, 34(10): 1203-1232.
9. Gundogan, N. and E. Avci. 2014. Occurrence and antibiotic resistance of Escherichia coli, Staphylococcus aureus and Bacillus cereus in raw milk and dairy products in Turkey. International Journal of Dairy Technology 67(4): 562-569.  
 10. Hill, P., G. W., Heberlig, and C. N. Boddy. 2017. Sampling terrestrial environments for bacterial polyketides. Molecules, 22(5): 707.
11. Ilic, S. B., S. S.  Konstantinovic, Z. B. Todorovic, M. L. Lazic, V. B. Veljkovic, N. Jokovic and B. C. Radovanovic. 2007. Characterization and antimicrobial activity of the bioactive metabolites in Streptomycete isolates. Microbiology 76(4): 421-428.
12. Jiang, S., W. Sun, M. Chen, S. Dai, L. Zhang, Y.  Liu and X. Li. 2007. Diversity of culturable Actinobacteria isolated from marine sponge Haliclona sp. Antonie Van Leeuwenhoek, 92(4): 405-416.
13. Kutu F. R., T. J. Mokase, O. A. Dada and O. H. J. Rhode. 2019. Assessing microbial population dynamics, enzyme activities and phosphorus availability indices during phospho‑compost production. International Journal of Recycling of Organic Waste in Agriculture 8: 87-97.
14. Lee L. H., N. Zainal, A. Z. Azman, S. K. Eng, B. H. Goh, W. F. Yin and K. G. Chan. 2014. Diversity and antimicrobial activities of Actinobacteria isolated from tropical mangrove sediments in Malaysia. The Scientific World Journal 2014: 1-14.
15. Lewin G. R., C. Carlos, M. G. Chevrette, H. A. Horn, B. R. McDonald, R. J. Stankeyand  and C. R. Currie. 2016. Evolution and ecology of Actinobacteria and their bioenergy applications. Annual Review of Microbiology 70: 235-254.
16. Li F., S. Liu, Q. Lu, H. Zheng, I. A. Osterman, D. A. Lukyanov, and D. Huang. 2019. Studies on antibacterial activity and diversity of cultivable Actinobacteria isolated from mangrove soil in Futian and Maoweihai of China. Evidence-Based Complementary and Alternative Medicine 2019: 1-11.
17. Metsä-Ketelä M, L. Halo, E. Munukka, J. Hakala, P. Mäntsälä and K Ylihonko. 2002. Molecular evolution of aromatic polyketides and comparative sequence analysis of polyketide ketosynthase and 16S ribosomal DNA genes from various Streptomyces species. Applied and Environmental Microbiology 68:4472–4479.
18. Nikolouli K. and D. Mossialos. 2012. Bioactive compounds synthesized by non-ribosomal peptide synthetases and type-I polyketide synthases discovered through genome-mining and metagenomics. Biotechnology Letters 34(8): 1393-1403.
19. Peng X., K. O. Yu, G. H. Deng, Y. X. Jiang, Y. Wang, G. X.  Zhang and H. W. Zhou. 2013. Comparison of direct boiling method with commercial kits for extracting fecal microbiome DNA by Illumina sequencing of 16S rRNA tags. Journal of Microbiological Methods 95(3): 455-462.
20. Salcedo R. G., C. Olano, C. Gómez, R. Fernández, A. F. Braña, C. Méndez and J. A. Salas. 2016. Characterization and engineering of the biosynthesis gene cluster for antitumor macrolides PM100117 and PM100118 from a marine Actinobacteria: generation of a novel improved derivative. Microbial Cell Factories, 15(1), 44.
21. Stach J. E. M., L.A. Maldonado, A.C. Ward, M. Goodfellow and A.T. Bull. 2003. New primers for the class Actinobacteria: application to marine and terrestrial environments. Environmental Microbiology 5: 5828–841. 
22. Velayudham S. and K. Murugan. 2012. Diversity and antibacterial screening of Actinomycetes from Javadi Hill Forest soil, Tamilnadu, India. Journal of Microbiology Research 2(2): 41-46. 
23. Wang, H., D. P. Fewer, L. Holm, L. Rouhiainen and K. Sivonen. 2014. Atlas of non-ribosomal peptide and polyketide biosynthetic pathways reveals common occurrence of non-modular enzymes. Proceedings of the National Academy of Sciences 111(25): 9259-9264.
24. Wei W., Y. Zhou, F. Chen, X. Yan, Y. Lai, C. Wei and X. Wang. 2018. Isolation, diversity, and antimicrobial and immunomodulatory activities of endophytic Actinobacteria from tea cultivars Zijuan and Yunkang-10 (Camellia sinensis var. assamica). Frontiers in Microbiology 9: 1-11.