ارزیابی توکسین زایی کلستریدیوم پرفرنجنس تیپ D در سه نوع محیط کشت

نوع مقاله : مقاله کامل

نویسندگان

1 بخش تحقیق و تولید فرآورده های بیولوژیک شعبه جنوب شرق کشور، موسسه تحقیقات واکسن و سرم سازی رازی، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرمان، ایران

2 بخش تحقیق و تولید فرآورده های بیولوژیک جنوب شرق کشور، موسسه تحقیقات واکسن و سرم سازی رازی، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرمان، ایران

چکیده

کلستریدیوم پرفرنجنس باعــث ایجاد بیماری‌های زیادی در انســان و دام می‌شــود. نوع توکسین‌های مترشحه، اساس طبقه‌بندی کلستریدیوم پرفرنجنس می‌باشد. یکی از مهم‌ترین توکسین‌ها، توکسین اپسیلون است که توسط تیپ D کلستریدیوم پرفرنجنس تولید می‌شود. هدف از این تحقیق مقایسه توکسین‌زایی کلستریدیوم پرفرنجنس تیپ D در سه نوع محیط کشت است. تفاوت این سه محیط کشت در نوع پپتون و وجود پودر جگر تجاری به عنوان ماده مغذی و منبع تامین کننده پروتئین می‌باشد. در این تحقیق جدایه‌های کلستریدیوم پرفرنجنس تیپ D  را در سه محیط مغذی (B ،A و C) کشت داده شد و پس از اطمینان از رشد، با استفاده از آزمایش‌های الیزا، حداقل دوز کشنده (Minimum Lethal Dose, MLD) و سنجش میزان پروتئین تام (Total Protein) میزان توکسین‌زایی مورد مقایسه قرار گرفت. میانگین میزان حداقل دوز کشنده نمونه‌ها در محیط کشت‌های B، A و C به ترتیب معادل 121، 89 و 98 MLD/ml بود. همچنین میانگین مقدار پروتئین تام نمونه‌ها در محیط کشت‌های B، A و C به ترتیب معادل 53، 4/104 و 7/86 میلی‌گرم در میلی‌لیتر بود. با استفاده از آزمون آماری مشخص شد که بین مقادیر پروتئین تام و میزان حداقل دوز کشنده رابطه مستقیم وجود دارد. با بررسی نتایج بدست آمده مشخص شد که سه نوع محیط کشت مورد استفاده در رشد و تکثیر کلستریدیوم پرفرنجنس تیپ D جهت تولید توکسین اپسیلون مشابه بوده و از کشندگی یکسانی برخوردار بودند و به عبارتی امکان استفاده به عنوان جایگزین همدیگر وجود دارد.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation of toxinogenesis of Clostridium perfringens type D isolates in three kinds of culture media

نویسندگان [English]

  • A. R. Karimabadizadeh 1
  • M. Shamsaddini Bafti 2
1 Biological Manufactures of Research & Production Department, South East Branch, Razi Vaccine & Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Kerman, Iran
2 Biological Manufactures of Research & Production Department, South East Branch, Razi Vaccine & Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Kerman, Iran
چکیده [English]

Clostridium perfringens (C. perfringens) causes many diseases in humans and livestock. The kind of secreted toxins is the basis of C. perfringens classification. One of the most important toxins in the epsilon toxin produced by C. perfringens type D. The purpose of this study is evaluating the produce of C. perfringens type D epsilon toxin in three types of culture medium (A, B, and C). The differences between these three media are the type of peptone and commercial liver powder as the main nutrient and protein supplier. In this study, C. perfringens type D isolates cultured in three different nutrient culture mediums, after growth assurance, the suspensions used for evaluation of toxicity by Minimum Lethal Dose (MLD) test, total protein content and ELISA assays. The presence of alpha and epsilon toxins in media were confirmed by ELISA assay. The mean MLD values were 121, 89, and 98 MLD/ml in A, B, and C media, respectively. The mean total protein contents were 53, 86.7, and 104.4 mg/ml in A, B, and C, respectively. Statistical analysis showed there is a direct correlation between the results of the total protein contents and MLD values. The results showed the three types of culture media used in the growth and power of C. perfringens type D to produce epsilon toxin was similar, in other words, they can be used as alternatives.

کلیدواژه‌ها [English]

  • Clostridium perfringens
  • toxin
  • minimum lethal dose
  • total protein
1- Ardehali, M., M. Moosawi and R. Pilahian. 1994. Isolation of Toxigenic Strains of Clostridium perfringens from the soil of farms in Iran. Arch Razi Inst 44: 95-100.
2- Ardehali, M., M. Moosawi and R. Pilehchian. 1992. Mass production of Clostridium oedematiens vaccine against Black disease of sheep. Liver 2: 4.
3- Bahl, H. and P. Dürre. 2001. Clostridia: Biotechnology & Medical Applications. John Wiley & Sons.
4- Baird‐Parker, A. and B. Freame. 1967. Combined effect of water activity, pH and temperature on the growth of Clostridium botulinum from spore and vegetative cell inocula. Journal of Applied Bacteriology 30: 420-429.
5- Byrne, B., A. Scannell, J. Lyng and D. Bolton. 2008. An evaluation of Clostridium perfringens media. Food Control 19: 1091-1095.
6- Cato, P. 1986. Genus Clostridium, 23AL. Bergey's manual of systematic bacteriology 2: 1144-1200.
7- De Jong, A., G. Eijhusen, E. Brouwer-Post, M. Grand, T. Johansson, T. Kärkkäinen, J. Marugg, P. Veld, F. Warmerdam and G. Wörner. 2003. Comparison of media for enumeration of Clostridium perfringens from foods. Journal of Microbiological Methods 54: 359-366.
8- El-Sehamy, M. 2011. Some factors affecting the production and biological activity of Clostridium septicum alpha toxin used in vaccine preparation. Benha Veterinary Medical Journal 1: 102-107.
9- El-Shorbagy, M., M. L.Reda and H. Mona. 2012. Prevalence of Clostridium perfringens Alpha toxin in processed and unprocessed fish. Int J of Microbiol Res 3: 195-199.
10- Fahmy, A., K. Mohamed, A. Samir, M. Ashgan, A. Azab and S. Selim. 2010. Preparation of a combined vaccine for clostridial diseases and rabies in sheep. Global Veterinaria 4: 463-473.
11- Fernandez-Miyakawa, M. E., B. H. Jost, S. J. Billington and F. A. Uzal. 2008. Lethal effects of Clostridium perfringens epsilon toxin are potentiated by alpha and perfringolysin-O toxins in a mouse model. Veterinary Microbiology 127: 379-385.
12- Fernandez-Miyakawa, M. E., S. Sayeed, D. J. Fisher, R. Poon, V. Adams, J. I. Rood, B. A. McClane, J. Saputo and F. A. Uzal. 2007. Development and application of an oral challenge mouse model for studying Clostridium perfringens type D infection. Infection and Immunity 75: 4282-4288.
13-    Garcia, J., V. Adams, J. Beingesser, M. Hughes, R. Poon, D. Lyras, A. Hill, B. A. McClane, J. Rood and F. A. Uzal. 2013. Epsilon toxin is essential for the virulence of Clostridium perfringens type D infection in sheep, goats, and mice. Infection and Immunity 81: 2405-2414.
14- Gibson, A. M. and T. Roberts. 1986. The effect of pH, sodium chloride, sodium nitrite and storage temperature on the growth of Clostridium perfringens and faecal streptococci in laboratory media. International Journal of Food Microbiology 3: 195-210.
15- Goekce, H. I., O. Genç, M. Soezmen and G. Gökçe. 2007. Determination of Clostridium perfringens toxin-types in sheep with suspected enterotoxemia in Kars Province, Turkey. Turkish Journal of Veterinary and Animal Sciences 31: 355-360.
16- Gonçalves, L. A., Z. I. Lobato, R. O. Silva, F. M. Salvarani, P. S. Pires, R. A. Assis and F. C. Lobato. 2009. Selection of a Clostridium perfringens type D epsilon toxin producer via dot-blot test. Archives of Microbiology 191: 847.
17- Gurjar, A., N. Hegde, B. Love and B. Jayarao. 2008. Real-time multiplex PCR assay for rapid detection and toxintyping of Clostridium perfringens toxin producing strains in feces of dairy cattle. Molecular and Cellular Probes 22: 90-95.
18- SOP, 2019, Method of derermination of minimum lethal dose of Clostridium perfringens type D,  Razi Vaccine & Serum Research Institute, Agricultural Research, KBR.0105.SOP. 
19- Juneja, V., F. Xuetong, A. Peña-Ramos, M. Diaz-Cinco and R. Pacheco-Aguilar. 2006. The effect of grapefruit extract and temperature abuse on growth of Clostridium perfringens from spore inocula in marinated, sous-vide chicken products. Innovative Food Science and Emerging Technologies 7: 100-106.
20- Juneja, V. K., H. Marks and H. Thippareddi. 2008. Predictive model for growth of Clostridium perfringens during cooling of cooked uncured beef. Food Microbiology 25: 42-55.
21- Mainil, J. 2006. Genus Clostridium-Clostridia in medical, veterinary and food microbiology: Diagnosis and typing,control of infectious diseases, European Communities, Printed in Luxembourg.
22- Miwa, N., T. Masuda, A. Kwamura, K. Terai and M. Akiyama. 2002. Survival and growth of enterotoxin-positive and enterotoxin-negative Clostridium perfringens in laboratory media. International journal of Food Microbiology 72: 233-238.
23- Naylor, R. D., P. K. Martin and L. T. Barker. 1997. Detection of Clostridium perfringens α toxin by enzyme-linked immunosorbent assay. Research in Veterinary Science, 63: 101-102.
24- Paktinat, M., M. Khodabandeh, B. M. Amiri and H. Farahmand. 2012. A Simple method for purification of low levels of Beluga (Huso huso) vitellogenin. International Conference on Applied Life Sciences. InTech.
25- Pilehchian Langroudi, R. 2014. Clostridium perfringens Type D epsilon prototoxin and toxin effects on the mouse body weight. Int J Enteric Pathog 2: 1-6.
26- Pilehchian Langroudi, R. 2015. Isolation, specification, molecular biology assessment and vaccine development of Clostridium in Iran: a review. Int J Enteric Pathog 3: 1-7.
27- Rocha, P., R. Assis, F. Lobato, V. Cardoso and L. Heneine. 2008. Stability and toxicity of Clostridium perfringens type D epsilon prototoxin treated by iodine. Arquivo Brasileiro de Medicina Veterinária e Zootecnia 60: 821-824.
28- Rood, J. I., V. Adams, J. Lacey, D. Lyras, B. A. McClane, S. B. Melville, R. J. Moore, M. R. Popoff, M. R. Sarker and J. G. Songer. 2018. Expansion of the Clostridium perfringens toxin-based typing scheme. Anaerobe 53: 5-10.
29- Tanaka, H., H. Hashiba, J. Kok and I. Mierau. 2000. Bile salt hydrolase of Bifidobacterium longum-biochemical and genetic characterization. Applied and Environmental Microbiology 66: 2502-2512.
30- Uzal, F.A., J.G. Songer, J.F. Prescott and M.R. Popoff. 2016. Clostridial diseases of animals. John Wiley & Sons, Inc. Hoboken, NJ. 
31- Uzal, F. A., K. Nielsen and W. Kelly. 1997. Detection of Clostridium perfringens type D epsilon antitoxin in serum of goats by competitive and indirect ELISA. Veterinary Microbiology 57: 223-231.
32- Uzal, F. A., W. Kelly, R. Thomas, M. Hornitzky and F. Galea. 2003. Comparison of four techniques for the detection of Clostridium perfringens type D epsilon toxin in intestinal contents and other body fluids of sheep and goats. Journal of Veterinary Diagnostic Investigation 15: 94-99.
33- Van Asten,  A.J., J.G. Allaart, A.D. Meeles, P.W. Gloudemans, D.J. Houwers and A.Gröne. 2008. A new PCR followed by MboI digestion for the detection of all variants of the Clostridium perfringens cpb2 gene. Veterinary Microbiology 127(3-4):412-6.
34- Yoo, H.S., S.U. Lee, K.Y. Park and Y.H. Park. 1997. Molecular typing and epidemiological survey of prevalence of Clostridium perfringens types by multiplex PCR. Journal of Clinical Microbiology 35: 228-232.