کاربرد دینامیک مولکولی در طراحی پیشرفته فرآورده‌های بیولوژیک و مطالعه پروتئین اجرام عفونی

نوع مقاله: مقاله مروری

نویسندگان

1 موسسه تحقیقات واکسن و سرم‌سازی رازی، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج، ایران

2 موسسه تحقیقات واکسن و سرم سازی رازی، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج، ایران

چکیده

شبیه‌سازی دینامیک مولکولی (MD) دانشی است که از ترکیب علوم زیستی، شیمی و روش‌ها و الگوریتم‌های متنوع رایانه‌ای-ریاضیاتی استفاده می‌کند. این تکنیک جهت طراحی پیشرفته دارو، واکسن، آنتی‌بادی، پروتئین یا پپتید و سایر ماکرو و میکرو مولکول‌های اجرام عفونی یا غیر عفونی و مواد بکار برده می‌شود. شکوفایی و تحول روزافزون این زمینه‌ از علم بیوانفورماتیک در طراحی و ساخت فوق پیشرفته فرآورده‌های بیولوژیک و دارویی، به شبیه‌سازی برون‌تنی پدیده‌های زیستی مشابه با شرایط درون‌تنی کمک شایانی نموده است. آشنایی هر چه بیشتر با این علم از نقطه نظر کاربردی و تولیدی برای محققین شاغل در دانشگاه‌ها و پژوهشگاه‌های علوم پزشکی و دامپزشکی می‌تواند سبب آشنایی هر چه بیشتر آن‌ها با این حوزه مترقی از علم شده و در بهبود پژوهش‌ها و تولیدات مفید باشد. از سوی دیگر، به کارگیری این علم می‌تواند به صورت قابل ملاحظه‌ای موجب صرفه‌جویی در هزینه‌ها و زمان شود. در این مقاله در درجه نخست به معرفی و تقسیم‌بندی دینامیک مولکولی از دید کلی پرداخته شده است و سپس مطالب پایه‌ای و مزایای دینامیک مولکولی، روش‌ها و برنامه‌های مورد استفاده در آن مورد بررسی قرار گرفته است. در پایان به کاربرد این روش نوین در تحقیقات ایمونوانفورماتیک (طراحی واکسن، کیت، آنتی‌بادی، ادجوانت و غیره) و کموانفورماتیک (طراحی دارو) و همچنین بررسی اجرام عفونی پرداخته شده است.

کلیدواژه‌ها


عنوان مقاله [English]

Application of Molecular Dynamics in Professional Designing of Biological Products and Study of Infectious Agents Protein

نویسندگان [English]

  • M.M. Ranjbar 1
  • A.R. Yousefi 1
  • S. Alamian 2
  • M. Ahmadi 2
  • S.G. Mirzaei 1
1 Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
2 Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
چکیده [English]

Molecular dynamic (MD) simulation is a knowledge which uses combination of biological sciences, chemistry, and various computer / mathematical methods and algorithms. This technique is applied in advanced design of drugs, vaccines, antibodies, proteins/peptides, and other macro and micro molecules of infectious / non-infectious agents as well as substances. The ever-increasing progress in this field of bioinformatics for the design and manufacture of ultra-advanced biological and pharmaceutical products helps to simulate the in vitro biological phenomena similar to the in vivo conditions. Introducing this science from practical and productive points of view to researchers who are working in universities or medical and veterinary institues can make them more familiar with this progressive field of science, and is effective on improvment researchs and production. On the other hand, the use of this knowlage reduces the excess cost and time of production. This paper, firstly discusses the introduction and division of MD in a general view, and then discusses the basic content and advantages of MD, and finally discusses the methods and programs used therein. The last section of the paper has addressed the use of this new method in immunoinformatic research (design of vaccin, kit, antibody, adjuvant, etc.), chemoinformatics (drug design), and also investigation of infectious diseases..

کلیدواژه‌ها [English]

  • Molecular dynamics
  • Immunoinformatics
  • Chemoinformatics
  • Infectious diseases

1- Alamian, S., M. Esmaelizad, T. Zahraei, A. Etemadi, M. Mohammadi, D. Afshar and S. Ghaderi. 2017. A Novel PCR Assay for Detecting Brucella abortus and Brucella melitensis. Osong Public Health and Research Perspectives 8,65.
2- Babu, K.R., V.K. Rao, Y.N. Kumar, K. Polireddy, K.V. Subbaiah, M. Bhaskar, V. Lokanatha and C.N. Raju. 2012. Identification of substituted [3, 2-a] pyrimidines as selective antiviral agents: Molecular modeling study. Antiviral Research 95: 118-127.
3- Barakat, K.H., J. Law, A. Prunotto, W.C. Magee, D.H. Evans, D.L. Tyrrell, J. Tuszynski and M. Houghton. 2013. Detailed computational study of the active site of the hepatitis C viral RNA polymerase to aid novel drug design. Journal of Chemical Information and Modeling 53: 3031-3043.
4- Brini, E., E.A. Algaer, P. Ganguly, C. Li, F. Rodríguez-Ropero and N.F. van der Vegt. 2013. Systematic coarse-graining methods for soft matter simulations–a review. Soft Matter 9, 2108-2119.
5- Childers, M.C. and V. Daggett. 2017. Insights from molecular dynamics simulations for computational protein design. Molecular Systems Design & Engineering 2: 9-33.
6- da Costa, A.L., I. Pauli, M. Dorn, E.K. Schroeder, C.-G. Zhan and O.N. de Souza. 2012. Conformational changes in 2-trans-enoyl-ACP (CoA) reductase (InhA) from M. tuberculosis induced by an inorganic complex: a molecular dynamics simulation study. Journal of Molecular Modeling 18: 1779-1790.
7- De Vivo, M., M. Masetti, G. Bottegoni and A. Cavalli. 2016. Role of molecular dynamics and related methods in drug discovery. Journal of Medicinal Chemistry 59: 4035-4061.
8- Demir, O.z. and R.E. Amaro. 2012. Elements of nucleotide specificity in the Trypanosoma brucei mitochondrial RNA editing enzyme RET2. Journal of Chemical Information and Modeling 52:1308-1318.
9- Dror, R.O., R.M. Dirks, J. Grossman, H. Xu and D.E. Shaw. 2012. Biomolecular simulation: a computational microscope for molecular biology. Annual Review of Biophysics 41: 429-452.
10- Durrant, J.D. and J.A. McCammon. 2011. Molecular dynamics simulations and drug discovery. BMC Biology 71: 1-9.
11- Frembgen-Kesner, T. and A.H. Elcock. 2006. Computational sampling of a cryptic drug binding site in a protein receptor: explicit solvent molecular dynamics and inhibitor docking to p38 MAP kinase. Journal of Molecular Biology 359: 202-214.
12- Genheden, S. and U. Ryde. 2015. The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opinion on Drug Discovery 10: 449-461.
13- Gogonea, V., D. Suárez, A. van der Vaart and K.M. Merz. 2001. New developments in applying quantum mechanics to proteins. Current Opinion in Structural Biology 11: 217-223.
14- Groenhof, G. 2013. Introduction to QM/MM simulations. Biomolecular Simulations: Methods in Molecular Biology 924:43-66.
15- Gupta, M., Y. Prasad, S.K. Sharma and C.K. Jain. 2017. Identification of Phosphoribosyl-AMP cyclohydrolase, as drug target and its inhibitors in Brucella melitensis bv. 1 16M using metabolic pathway analysis. Journal of Biomolecular Structure and Dynamics 35: 287-299.
16- Hospital, A., J.R. Goñi, M. Orozco and J.L. Gelpí. 2015. Molecular dynamics simulations: advances and applications. Advances and Applications in Bioinformatics and Chemistry: AABC 8: 37-47.
17- Hu, X., P.M. Legler, N. Southall, D.J. Maloney, A. Simeonov and A. Jadhav. 2014. Structural insight into exosite binding and discovery of novel exosite inhibitors of botulinum neurotoxin serotype A through in silico screening. Journal of Computer-aided Molecular Design 28: 765-778.
18- Ivetac, A. and J. Andrew McCammon. 2010. Mapping the Druggable Allosteric Space of G-Protein Coupled Receptors: a Fragment‐Based Molecular Dynamics Approach. Chemical Biology & Drug Design 76: 201-217.
19- Kass, I., A.M. Buckle and N.A. Borg. 2014. Understanding the structural dynamics of TCR-pMHC interactions. Trends in Immunology 35: 604-612.
20- Kohlhoff, K.J., D. Shukla, M. Lawrenz, G.R. Bowman, D.E. Konerding, D. Belov, R.B. Altman and V.S. Pande. 2014. Cloud-based simulations on Google Exacycle reveal ligand modulation of GPCR activation pathways. Nature Chemistry 6:15-21.
21- Lei, H. and Y. Duan. 2007. Improved sampling methods for molecular simulation. Current Opinion in Structural Biology 17: 187-191.
22- Leimkuhler, B. and C. Matthews. 2015. Molecular Dynamics: With Deterministic and Stochastic Numerical Methods. Springer International Publishing, Springer.
23- Leonov, H., P. Astrahan, M. Krugliak and I.T. Arkin. 2011. How do aminoadamantanes block the influenza M2 channel, and how does resistance develop? Journal of the American Chemical Society 133: 9903-9911.
24- Li, H.-J., C.-T. Lai, P. Pan, W. Yu, N. Liu, G.R. Bommineni, M. Garcia-Diaz, C. Simmerling and P.J. Tonge. 2014. A structural and energetic model for the slow-onset inhibition of the Mycobacterium tuberculosis enoyl-ACP reductase InhA. ACS chemical biology 9: 986-993.
25- Maithri, G., B. Manasa, S. Vani, A. Narendra and T. Harshita. 2016. Computational Drug Design and Molecular Dynamic Studies-A Review. Biomedical Data Mining 5:123-132.
26- Mallik, B. and D. Morikis. 2006. Applications of molecular dynamics simulations in immunology: a useful computational method in aiding vaccine design. Current Proteomics 3: 259-270.
27- Mancini, D.T., K.S. Matos, E.F. da Cunha, T.M. Assis, A.P. Guimaraes, T.C. Franca and T.C. Ramalho. 2012. Molecular modeling studies on nucleoside hydrolase from the biological warfare agent Brucella suis. Journal of Biomolecular Structure and Dynamics 30: 125-136.
28- Mortier, J., C. Rakers, M. Bermudez, M.S. Murgueitio, S. Riniker and G. Wolber. 2015. The impact of molecular dynamics on drug design: applications for the characterization of ligand–macromolecule complexes. Drug Discovery Today 20: 686-702.
29- Mortier, J., C. Rakers, R. Frederick and G. Wolber. 2012. Computational tools for in silico fragment-based drug design. Current Topics in Medicinal Chemistry 12: 1935-1943.
30- Nair, P.C. and J.O. Miners. 2014. Molecular dynamics simulations: from structure function relationships to drug discovery. In SilicoPharmacology 2: 1-4.
31- Pappalardo, F., V. Brusic, M. Pennisi and G. Zhang. 2015. Advances in computational immunology. Journal of Immunology Research 2015: 1-3.
32- Pradeepkiran, J.A., K.K. Kumar, Y.N. Kumar and M. Bhaskar. 2015. Modeling, molecular dynamics, and docking assessment of transcription factor rho: a potential drug target in Brucella melitensis 16M. Drug design, Development and Therapy 9: 1897-1912.
33- Rakers C., S.-M. Schwerdtfeger, J. Mortier, S. Duwe, T. Wolff, G. Wolber and M.F. Melzig. 2014. Inhibitory potency of flavonoid derivatives on influenza virus neuraminidase. Bioorganic & Medicinal Chemistry Letters 24: 4312-4317.
34- Ranjbar, M., Ataei Kachooei, S., Matin, M. 2017. Study of structural variations and phylogeny of DQA from MHC class II in cattle. Veterinary Researches & Biological Products. Veterinary Researches and Biological Products 30: 34-42 (In Farsi).
35- Ranjbar, M., S. Ataei, G. Nikbakht and S. Golabdar. 2017. Analysis of variations, structures, and phylogenic characteristics of bovine leukocyte antigen DRB3 exon2. Archives of Razi Institute 72,147-157.
36- Ranjbar, M., D. Mosavi Nasab, A. Ghelian chian, A. Nazoktabar, M. Ahmadi, R. Khoshnevisan, S. Esfandiari, J. Vafaee Manesh and A. Akbari. 2013. Immnoinformatics and epitope prediction methods dynamic science with promising achievements. Journal of Ilam University 21: 300-309.
37- Ranjbar, M.M., V. Assadolahi, M. Yazdani, D. Nikaein and B. Rashidieh. 2016. Virtual dual inhibition of COX-2/5-LOX enzymes based on binding properties of alpha-amyrins, the anti-inflammatory compound as a promising anti-cancer drug. Excli Journal 15: 238-245.
38- Ranjbar, M.M., S. Golabdar and M. Khajoei. 2014. Chemoinformatic: An effective and strong knowledge in designing of new drugs. Pejvad 3,45-49 (In farsi).
39- Ranjbar, M.M., A. Nayeb Ali, K. Ghorban, A. Ghalyanchi Langeroudi, M. Dadmanesh, H.-R. Amini and B. Sedighi Moghaddam. 2015. Immnoinformatics: Novel view in understanding of immune system function, databases and prediction of immunogenic epitopes. Koomesh,18-26 (In Farsi).
40- Rashidieh, B., M. Valizadeh, V. Assadollahi and M.M. Ranjbar. 2015. Molecular dynamics simulation on the low sensitivity of mutants of NEDD-8 activating enzyme for MLN4924 inhibitor as a cancer drug. American Journal of Cancer Research 5: 3400-3406.
41- Riniker, S., J.R. Allison and W.F. van Gunsteren. 2012. On developing coarse-grained models for biomolecular simulation: a review. Physical Chemistry Chemical Physics 14:12423-12430.
42- Satoh, A. 2010. Introduction to practice of molecular simulation: molecular dynamics, Monte Carlo, Brownian dynamics, Lattice Boltzmann and dissipative particle dynamics. Elsevier, London.
43- Schames, J.R., R.H. Henchman, J.S. Siegel, C.A. Sotriffer, H. Ni and J.A. McCammon. 2004. Discovery of a novel binding trench in HIV integrase. Journal of Medicinal Chemistry 47:1879-1881.
44- Shi, Y., Z. Xia, J. Zhang, R. Best, C. Wu, J.W. Ponder and P. Ren. 2013. Polarizable atomic multipole-based AMOEBA force field for proteins. Journal of Chemical Theory and Computation 9: 4046-4063.
45- Stavrakoudis, A. 2010. Conformational flexibility in designing peptides for immunology: the molecular dynamics approach. Current Computer-aided Drug Design 6: 207-222.
46- Tai, K. 2004. Conformational sampling for the impatient. Biophysical Chemistry 107: 213-220.
47- Vanommeslaeghe, K. and O. Guvench. 2014. Molecular mechanics. Current pharmaceutical design 20: 3281-3292.
48- Vlachakis, D., E. Bencurova, N. Papangelopoulos and S. Kossida. 2014. Current state-of-the-art molecular dynamics methods and applications. Advances in Protein Chemistry and Structural Biology 94: 269-313.
49- Wassman, C.D., R. Baronio, Ö. Demir, B.D. Wallentine, C.-K. Chen, L.V. Hall, F. Salehi, D.-W. Lin, B.P. Chung and G.W. Hatfield. 2013. Computational identification of a transiently open L1/S3 pocket for reactivation of mutant p53. Nature Communications 4: 1407.
50- Welsch, C., S. Schweizer, T. Shimakami, F.S. Domingues, S. Kim, S.M. Lemon and I. Antes. 2012. Ketoamide resistance and hepatitis C virus fitness in val55 variants of the NS3 serine protease. Antimicrobial Agents and Chemotherapy 56:1907-1915.
51- Yang, Z., N. Wu, Y. Fu, G. Yang, W. Wang, Y. Zu and T. Efferth. 2010. Anti-infectious bronchitis virus (IBV) activity of 1, 8-cineole: Effect on nucleocapsid (N) protein. Journal of Biomolecular Structure and Dynamics 28: 323-330.
52- Young, J.K., D. Li, M.C. Abramowitz and T.G. Morrison. 1999. Interaction of peptides with sequences from the Newcastle disease virus fusion protein heptad repeat regions. Journal of Virology 73: 5945-5956.
53- Yu, W., S.K. Lakkaraju, E.P. Raman and A.D. MacKerell. 2014. Site-identification by ligand competitive saturation (silcs) assisted pharmacophore modeling. Journal of Computer-aided Molecular Design 28: 491-507.