همبستگی بین متیل جیوه تجمع یافته در اندام های کلیه و کبد و برخی فاکتورهای بیوشیمیایی سرم خون بچه فیل ماهیان جوان (Huso huso)

شناسنامه علمی شماره

نویسندگان

پژوهشکده تالاب بین المللی هامون، گروه شیلات دانشگاه زابل

چکیده

در این تحقیق همبستگی متیل جیوه تجمع یافته در اندام کلیه و کبد و برخی فاکتورهای بیوشیمیایی سرم خون بچه فیل ماهیان جوان شامل آسپارتات آمینوترانسفراز (AST (Aspartate aminotransferase؛ آلکالین فسفاتاز Alkaline phosphatase) ALP)؛ آلانین آمینوترانسفراز Alanine aminotransferase), ALT)؛ لاکتات دهیدروژناز Lactate dehydrogenase), LDH)؛ گلوکز (Glucose, GLU) و کورتیزول (Cortisol) مورد بررسی قرار گرفت. به همین منظور بچه فیل ماهیان جوان با میانگین وزنی 4±86 گرم با دو نوع جیره غذایی حاوی متیل جیوه در دو گروه تیماری با چهار تکرار شامل گروه شاهد با 04/0 و گروه غلظت پایین با 766/0 میلی گرم در کیلوگرم طی 32 روز تحت تیمار قرار گرفتند. نتایج نشان داد که میزان کلیه فاکتورها شامل AST, ALT, LDH, GLU و کورتیزول به استثنای آنزیم ALP در سرم خون بچه ماهیان تحت تیمار نسبت به گروه کنترل در طی دوره آزمایش روند افزایشی معنی داری (P<0.01, P<0.05) داشته است.  بررسی همبستگی بین میزان متیل جیوه تجمع یافته در اندام های کلیه و کبد با فاکتورهای بیوشیمیایی مختلف سرم خون بچه فیل ماهیان تحت تیمار نیز نشان داد که در کلیه بیشترین میزان همبستگی مربوط به فاکتورهای خونی ALT، GLU، کورتیزول و در کبد مربوط به ALT و AST می باشد. همچنین کمترین میزان همبستگی بین میزان تجمع متیل جیوه و میزان فاکتورهای بیوشیمیایی سرم خون در اندام کلیه و کبد مربوط به آنزیم LDH بدست آمد. براساس نتایج این تحقیق به نظر می رسد که فاکتورهای بیوشیمیایی سرمی مورد بررسی می توانند به عنوان بیو مارکرهای آنزیمی برای تشخیص القاء سمیت توسط جیوه مورد استفاده قرار گیرند.

عنوان مقاله [English]

Correlation between methylmercury accumulation in the kidney and liver and some biochemical parameters of blood sera in juvenile beluga (Huso huso)

نویسندگان [English]

  • A Gharaei
  • M Ghaffari
Department of Fisheries, Hamoun International Wetland Research Institute, University of Zabol, Zabol, Sistan & Balouchestan, Iran
چکیده [English]

In this study, correlation between Methylmercury (MeHg) accumulation in the kidney and liver and several blood biochemical parameters juvenile beluga (Huso huso) including aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), lactate dehydrogenase (LDH), glucose (GLU), and Cortisol was investigated. To do this, juvenile beluga were fed with two different diets containing MeHg (control: 0.04 mg kg-1 and 0.76 mg kg-1 low treatment) for 32 days. The results showed significant increase (P<0.01, P<0.05) in all biochemical parameters except ALP level compared with the control group during the experiment. A survey of correlation between MeHg accumulation in the two organs (kidney and liver) and the biochemical parameters of blood sera showed that the levels of ALT, GLU and Cortisol parameters in kidney and ALT and AST in liver were highly correlated with accumulation of MeHg, whereas LDH enzyme level was the lowest correlation in both organs. The results suggested that the sera biochemical parameters under investigation can be used as enzyme biomarkers to assess toxicity induction by MeHg.

1- شاهسونی، د.، مهری، م. تقوایی مقدم، ا. (1386) تعیین مقادیر برخی از آنزیم های سرم خون فیل ماهی  خاویاری. مجله تحقیقات دامپزشکی، سال 62، شماره 3 ، صفحه 130-127.  ##
2- Agusa, T., Kunita, T., Tanabe, S., Pourkazemi, M. and Aubrey, D. (2004) Concentration of trace elements in muscle of sturgeons in the Caspian Sea. Mar. Pollut. Bul., Vol, 49, pp: 789-80. ##
3- Aluru, N. and Vijayan, M.M. (2009) Stress transcriptomics in fish: A role for genomic Cortisol signaling. Gene. Comp. Endocrin., Vol, 164, pp: 142–150.##
4- Armstrong, F.A.J. (1979) Effects of mercury compounds on fish. In: Nriagu J.O., The Biogeochemistry of Mercury in the Environment. 1st. Elsevier. North Holland, Amsterdam.##
5- Bloom, N.S. (1992) On the chemical form of mercury in edible fish and marine invertebrate tissue. Can. J. Fish. Aquat. Sci., Vol, 49, pp: 1010–1017.##
6- El-Demerdash, F.M., Yousef, M.I., Elagamy, E.I., (2001) Influence of paraquat, glyphosate and cadmium on the activity of some serum enzymes and protein electrophoretic behavior
(in vitro). J. Environ. Sci. Health. Part B, Vol, 36, No, 1, pp: 29-42.##
7- Gharaei, A., Esmaili-Sari, A., Jafari-shamoshaki, J. and Ghafari, M. (2008) Beluga (Huso huso, Brandet 1869) bioenergetics under dietary methylmercury. Fish Physiol. Biochem., Vol, 34, pp: 473–482.##
8- Gharaei, A., Mahboudi, F., Esmaili-Sari, A., Edalat, R. and Adeli, A. (2009) Molecular cloning of cDNA of mammalian and chicken II gonadotropin-releasing hormones (mGnRHs and cGnRH-II) in the beluga (Huso huso) and the disruptive effect of methylmercury on gene expression. Fish Physiol. Biochem., DOI: 10.1007/s10695-009-9356-0. ##
9- Gochfeld, M. (2003) Cases of mercury exposure, bioavailability, and absorption. Ecotoxic. Environ. Safe, Vol, 56, pp: 174-179.  ##
10- Gotelli, CA, Astolfi, E., Cox, C., Cernichiari, E. and Clarkson, T.W. (1985) Early biochemical effects of an organo-mercury fungicide on infants: "Dose makes the poison". Science, vol, 227, pp: 638-640.##
11- Houck, A and Cech, JJ. (2004) Effects of dietary methylmercury on juvenile Sacramento blackfish bioenergetics. Aquatic Toxicol. Vol, 69, pp:  107-123.##
12- Huckabee, J.W., Elwood, J.W. and Hildebrand S.G. (1979) Accumulation of mercury in freshwater biota. Nriagu J.O., Biogeochemistry of Mercury in the Environment, 1st. Elsevier North Holland Biomedical Press, New York, pp: 277–302.##
13- Jarvenpäa, T., Tillander, M. and Miettinen, J. (1970) Methylmercury: half-time of elimination in flounder, pike and eel. Suom. Kemistil., Vol, 43, pp: 439–442.Khodorevskaya, R.P., ##
14- Kubïlay, A. and Uluköy, G. (2002) The effects of acute stress on rainbow trout (Oncorhynchus mykiss). Turk. J. Zool., Vol, 26, pp: 249-254.##
15- Lakshmi, R., Kundu, R., Thomas, E. and Mansuri, A.P. (1991) Mercuric chloride induced inhibition of acid and alkaline phosphates activity in the kidney of mudskipper; Boleophthalmus dentatus. Vol, 3, pp: 341-344.##
16- Mommsen, T.P., Vijayan, M.M. and Moon, T.W. (1999). Cortisol in teleosts: dynamics, mechanisms of action, and metabolic regulation. Rev. Fish Biol. Fish., Vol, 9, pp: 211–268.##
17- Oliviera Robeiro, C.A., Belger, L., Pelletier, É. and Rouleau C. (2002). Histopathological evidence of inorganic mercury and methylmercury toxicity in the artic charr (Salvelinus alpinus). Environ. Res., Vol, 90, pp: 217-225. ##
18- Peterle, T. (1991). Wildlife Toxicology. Van Nostrand Reinhold, New York. ##
19- Shahsavani, D., Mohri, D. and Gholipour Kanani, H. (2008). Determination of normal values of some blood serum enzymes in Acipenser stellatus Pallas. Fish Physiol. Biochem., DOI: 10.1007/s10695-008-9277-3.##
20- Rajabipour, R,,  Shahsavani, D.,  Moghimi, A., Jamili, S. and Mashaii, N. (2010). Comparison of serum enzyme activity in great sturgeon, Huso huso, cultured in brackish and freshwater earth ponds in Iran. Comp. Clin. Pathol., vol, 19, pp: 301–305.##
21- World Health Organization (WHO) (1989). Environmental Health Criteria 86: Mercury -  Environmental aspects, Geneva, Switzerland, 150 pp. ##
22- Zhuravleva, O.L. and Vlasenko, A.D. (1997) Present status of commercial stocks of sturgeon in the Caspian Sea basin. Environ. Biol. Fish., Vol, 48, pp: 209-219.##