1. Arnold, U. 2018. Investigations into the cellular interactome of the PB2 protein expressed by seasonal and highly pathogenic avian influenza viruses. Ph.D thesis. University of Hamburg, Berlin, Germany.
2. Bader, G. D. and Hogue, C. W. 2003. An automated method for finding molecular complexes in large protein interaction networks. BMC bioinformatics, 4(1): 1-27.
3. Cameron, C. M., Cameron, M. J., Bermejo-Martin, J. F., Ran, L., Xu, L., Turner, P. V. and Kelvin, D. J. 2008. Gene expression analysis of host innate immune responses during lethal H5N1 infection in ferrets. Journal of virology, 82(22): 11308-11317.
4. Cui, Morgan, D., Cheng, D. H., Foo, S. L., Yap, G. L., Ampomah, P. B., and Lim, L. H. 2020. RNA-Sequencing-Based trancriptomic analysis reveals a role for annexin-A1 in classical and influenza A virus-induced autophagy. Cell, 9(6):1399.
5. Forero, A., Tisoncik, J., Watanabe, T., Zhong, G., Hatta, M., Tchitchek, N. and Katze, M. 2016. The 1918 influenza virus PB2 protein enhances virulence through the disruption of inflammatory and WNT mediated signaling in mice. Journal of virology, 90(5): 2240-2253.
6. Green, R., Wilkins, C., Thomas, S., Sekine, A., Hendrick, D. M., Voss, K, and Gale, J. 2017. Oas1b-dependent immune transcriptional profiles of west nile virus infection in the collaborative cross. G3: Genes, Genomes, Genetics, 7(6): 1665-1682.
7. Heaton, N. S., Moshkina, N., Fenouil, R., Gardner, T. J., Aguirre, S., Shah, p. s. and Marazzi, I. 2016. Targeting viral proteostasis limits influenza virus, HIV, and dengue virus infection. Immunity, 44(1): 46-58.
8. Hu, J., Mo, Y., Wang, X., Gu, M., Hu, Z., Zhong, L. and Liu, X. 2015. PA-X decreases the pathogenicity of highly pathogenic H5N1 H5N1 influenza A virus in avian species by inhibiting virus replication and host response. Journal of virology, 89(8): 4126-4142.
9. Hu, Y., Lou, J., Mao, Y. Y., Lai, T. W., Liu, L. Y., Zhu, C. and Shen, H. H. 2016. Activation of MTOR in pulmonary epithelium promotes LPS-induced lung injury. Autophagy, 12(12): 2286-2299.
10. Huang, D. W., Sherman, B. T. and Lempicki, R. A. 2009. Systematic and integrative analysis of large gene lists using DAVID Bioinformatics Resources. Nature Protocol, 4(1): 44-57.
11. James, S., Ola, B., Terrence, M.T., Jeffery, K.T., James, C.P. and Ian, A.W. 2006. Structure and Receptor Specificity of the Hemagglutinin from an H5N1 Influenza Virus. Science: 404-410.
12. Kann, M. G. 2007 Protein interactions and disease: computational approaches to uncover theetiology of diseases. Brief Bioinformatics, 8: 333–346.
13. Khadimian, S., Bayat, M., Azizi, A., Qadri, S., Zia, M.A. and Beheshti, Sh. 2011. Serological investigation of influenza disease in native chickens in the areas near the sea of Golestan province. Iranian Journal of Medical Microbiology, 6: 15-23.
14. Klees, S., Schluter, J. S., Schellhom, J., Bertram, H., Kurzweg, A. C., Ramzan, F. and Gultas, M. 2022. Comparative investigation of Gene regulatory processes underluing avian influenza viruses in chicken and duck. Biology, 11(2): 219.
15. Liu, Y. C., Mok, B. W. Y., Wang, P., Kuo, R. L., Chen, H., and Shih, S. R. 2021. Cellular 5′-3′ mRNA exoribonuclease XRN1 inhibits interferon beta activation and facilitates influenza A virus replication. Microbiological Research, 12(4): 945-21.
16. Mason, O. and Verwoerd, M. 2006. Graph Theory and Networks in Biology. The Journal of Engineering and Technology 2: 89-119.
17. Ouyang, H., Wang, Z., Chen, X., Yu, J., Li, Z., and Nie, Q. 2017. Proteomic analysis of chicken skeletal muscle during embryonic development. Frontiers in physiology, 8 (281).
18. Rahim, M., Klewes, L., Zahedi, A., Mai, S. and Coombs, K. M. 2018. Global interactiomics connect unclear mitotic apparatus protein NUMA1 to influenza virus maturation. Viruses, 10(12): 731.
19. Ramnani, B., Manivannan, P., Jaggernauth, S., and Malathi, K. 2021. ABCE1 regulates RNase L-induced autophagy during viral infections. Viruses, 13(2): 315.
20. Ranaware, P. B., Mishra, A., Vijayakumar, P., Gandhale, P. N., Kumar, H., Kulkarni, D. D., and Raut, A. A. 2016. Genome wide host gene expression analysis in chicken lungs infected with avian influenza viruses. PLoS One, 11(4): e0153671.
21. Rashid, M. 2022. Role of fibronectin-interacting cellular proteins in Influenza a virus infection in human lung epithelial. Cells, 13(2): 315
22. Riel, D., Munster, V. J., Wit, E., Rimmelzwaan, G. F. and Kuiken, T. 2007. Human and avian influenza viruses target different cells in the lower respiratory tract of humans and other mammals. Immunopathology and Infectious Disease, 171: 1215-1223.
23. Rual, J. F., Venkatesan, K., Hao, T., Hirozane-Kishikawa, T., Dricot, A., Li, N. and Vidal, M. 2005. Towards a proteome-scale map of the human protein–protein interaction network. Nature, 437(7062): 1173-1178.
24. Shahsundi, sh. 2014. Dynamic evaluation of influenza virus multiplication and virus-host interactions. Scientific Research Journal of Arak University of Medical Sciences. 5: 1-20.
25. Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D. and Ideker, T. (2003). Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome research, 13(11): 2498-2504.
26. Spackman, E. 2002. Influenza virus and the avian H5 and H7 hemagglutinin subtypes. Journal of Clinical Microbiology, 40: 3256-3260.
27. Stevens, J., Blixt, O., Paulson, J. C. and Wilson, I. A. 2006. Glycan microarray technologies tools to survey host specificity of influenza viruses. Nature Reviews Microbiology, 4(11): 857-864.
28. Sun, W., Li, S., Yang, J., Yang, L., Quan, G. and Liu, N. 2015. Proteomics analysis of cellular proteines co-immunoprecipitated with nucleoprotein of influenza a virus (H7N9). International Journal of Molecular Scuences, 16(11): 25982-25998.
29. Tatebe, K., Zeytun, A., Ribeiro, R. M., Hoffman, R., Harrod, K. S. and Forst, C. V. 2010. Response network analysis of differential gene expression in human epithelial lung cells during avian influenza infections. BMC bioinformatics, 11: 1-15.
30. Ulyanova, V., Shah Mahmud, R., Laikov, A., Dudkina, E., Markelova, M., Mostafa, A. and llinskaya, O. 2020. Anti-influenza activity of the ribonuclease Binase: cellular targets detected by quantitative proteomics. International Journal of Molecular Sciences, 21(21): 8294.
31. Vanderven, H. A., Petkau, K., Ryan-Jean, K. E., Aldridge Jr, J. R., Webster, R. G., and Magor, K. E. 2012. Avian influenza rapidly induces antiviral genes in duck lung and intestine. Molecular immunology, 51(3-4): 316-324.
32. Wahl, A.,Schafer, F., Bardet, W. and Hildebrand, W. H. 2010. Hla class I molecules reflect an altered host proteome after influenza virus infection. Human immunology, 71(1):14-22.
33. Wang, Y., Brahmakshatriya, V., Lupiani, B., Reddy, S. 2012. Integrated analysis of microRNA expression and mRNA transcriptome in lungs of avian influenza virus infected broilers. BMC Genomics, 13(278).
34. Yang, J., Huang, X., Liu, Y., Zhao, D., Han, K., Zhang, L. and Liu, Q. 2020. Analysis of the microRNA expression profiles of chicken dendritic cells in response to H9N2 avian influenza virus infection. Veterinary Research, 51: 1-9.
35. Ye, Y,. Fan, H., Li, Q., Zhang, Z., Miao, P., Zhu, J., Liu, J., Zhang, J., Liao, M. 2022. Differential proteome response to H5N1 highly pathogenic avian influenza (HPAI) viruses infection in duck. Frontiers in Immunology, 19 (13): 965454.
36. Yildirim, M. A., Goh, K. I., Cusick, M. E., and Barabasi, A. L. 2007. Vidal Marc. Drug-target network. Nat Biotechnol, 25(10: 1119-1126.