Advanced Phage Display Technology: Applications and Limitations in development of biological products

Document Type : Literature Review

Authors

1 Research and Production of Therapeutic Serum Department, Razi Vaccine and serum Research institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Alborz, Iran.

2 Research and production of FMD Vaccine Department, Razi Vaccine and serum Research institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Alborz, Iran.

Abstract

Phage display technology is a powerful and progressing technique with a wide range of applications that, has proven its effectiveness in many of biological fields, including, production of anti-toxin antibodies, drug discovery, production of monoclonal antibodies, molecular imaging, gene therapy, vaccine development, isolation of specific binding peptides for venom components, studies of immunogenicity, development of new vaccines, and nanotechnology. One of the important areas of this technology is the production of anti-toxin antibodies against venom of poisonous animals, especially snakes. With the advances that this technology has made in the production of anti-toxin antibodies, it seems that in the not too far future, this technology can be used to produce new generation of antivenoms and solving of the existing antivenom problems. Despite of the many applications of the phage display technology, however, like other techniques, it has some problems such as need to high skill, losing the desired clones or no pairing of light and heavy corresponding chains same as the original antibody-producing cells, which may be seen when using the phage display technology. In this review article, an attempt has been made to examine phage display technology, its applications and limitations.    

Keywords


1. Alejandro, G.-M., Jesús, H.-P., Hafiz, M. N. Iqbal, Marco, R.-P. Jorge, B. 2020. Bacteriophage-Based Vaccines: A Potent Approach for Antigen Delivery. Vaccines. 8, 504: 1-24.
2. André, F., Jonas, K., Sonja, W., Thomas, S., Michael, H. 2014. Construction of Human Antibody Gene Libraries and Selection of Antibodies by Phage Display. Michael Steinitz (ed.), Human Monoclonal Antibodies: Methods and Protocols, Methods in Molecular Biology, vol. 1060, DOI 10.1007/978-1-62703-586-6_12, © Springer Science + Business Media 2014.
3. Bao,P.W., Bing, X., Tian-Mo, W., Ya-Li, Z., Zhen-Shu, Z., Dian-Yuan, Z., Zhuo-Sheng, L. and Chun-Fang, G. 2001. Construction and selection of the natural immune Fab antibody phage display library from patients with colorectal cancer. World J Gastroenterol  7(6):811-815.
4. Bryce, N., Sachdev, S. S. 2012. Synthetic Antibody Libraries. Therapeutic Proteins: Methods and Protocols.  DOI 10.1007/978-1-61779-921-1_2,. 27-41 .Chap:2.
5. Braunage, M. 2003. Construction of semisynthetic antibody libraries. Recomb Antib Cancer Ther. 207: 123-32.
6. Braunagel, M., Little, M. 1997.  Construction of a semisynthetic antibody library using trinucleotide oligos. Nucleic Acids Research. 25(22): 4690–4691.
7. Carmela, D.B., Marcelo, Macedo B. and Andrea, Q. M. 2012. Antibody Phage Display Libraries: Contributions to oncology. Int J Mol Sci. 13, 5420-5440.
8. Eduardo, C. R., Lucas, B. C., Gabriela, P., Luciano, C. S., Gilvan, P. F., Jose, E. B. 2015. Phage display as a novel promising antivenom therapy: A review. Toxicon.  93, January: 79-84    .                                                                                       
9.  Geir, Å. L., Inger, S. 2012. Next generation phage display by use of pVII and pIX as display scaffolds. Methods. 58(1): 40-46                                                                                                                                            10. Hammers, C. M., Stanley, J. R. 2014. Antibody Phage Display: Technique and Applications. J Invest Dermatol. 134(2): 1-13.                
11. Hans, J.H., Nicole, V.N., Anneke, R., Simon, E.H., Rob, C.R., Paulla, H., Adriaan, P. B., Jan, W. A., and Hennie, R.H. 1999. A large non immunized human Fab fragment phage library that permits rapid isolation and kinetic analysis of high affinity antibodies. The Journal of biological chemistry , 274(26) June 25: 18218-18230.
12. James, K. T., Matthew, K. K., CDR Jacob, J. G., Yoon, Y. H. 2017. Application of phage display for the development of a novel inhibitor of PLA2 activity in Western cottonmouth venom. J Venom Res. 8: 19-24.                                                                                                                                               
13. Janka, B., Ľubomíra, T., Peter, B., Peter, C. 2013. In vivo phage display — A discovery tool in molecular biomedicine. Biotechnology Advances. 31(8): 1247-1259.                                                                                                          
14. Justyna, B., Ireneusz, C., Andrzej, G. 2012. Phage display—A powerful technique for immunotherapy. 1. Introduction and potential of therapeutic applications. Human Vaccines & Immunotherapeutics. 8 (12): 1816- 1828.                                                                                                                  
15. Justyna, B., Ireneusz, C. Andrzej, G. 2012. Phage display—A powerful technique for immunotherapy. 2. Vaccine delivery. Human Vaccines & Immunotherapeutics 8(12):1829–1835.                                                                                      
16. Jianming, G., Yanlin, W., Zhaoqi L., Zhiqiang W. 2010. Phage display and its application in vaccine design. Ann Microbiol. 60:13–19.                                                                                                                                                                 
17. Jinye, L., Hongxia, S., Yanlin, T., Bin, Y., Lisheng, Q., Xiaoli, Y., Brian, C., Gengxi, H., Hiroshi,T. and Xunjia, C. (2006). Production of an anti-severe acute respiratory syndrome (SARS) coronavirus human monoclonal antibody Fab fragment by using a combinatorial immunoglobulin gene library derived from patients who recovered from SARS. Clinical and vaccine immunology. 13(5): 594–597.
18. Kadkhodazadeh, M., Rajabibazl, M., Motedayen,  M. H., Shahidia, S., , Veisi Malekshahi, Z., Azam, R., Yarahmadi, M. 2020. Isolation of Polyclonal Single-Chain Fragment Variable (scFv) Antibodies Against Venomous Snakes of Iran and Evaluation of Their Capability in Neutralizing the Venom. Iranian Journal of Pharmaceutical Research.19 (3): 288-296 DOI: 10.22037/ijpr.2019.14400.12358 .
19. Kevin, J., Richard, G., Hardev, S. 2008. Viral therapy of cancer. New Jersey: Wiley online library.                                                                                                                                       
20. Laustsen, A. H., , Gutierrez, J. M., Knudsen, C., Johansen, K. H., Bermúdez-Mendez, E., Cerni, F. A., Jürgensen, J. A., Ledsgaard, L., Martos-Esteban, A., Øhlenschlæger, M., Pus, U., Andersen, M.R., Lomonte, ., Engmark, M., Pucca, M. B. 2018. Pros and cons of different therapeutic antibody formats for recombinant antivenom development. Toxicon. 146, May: 151-175    .                                                                                                                                    
21. Laustsen, A. H., Lauridsen, L. P., Lomonte, B., Andersen M.l R., Lohse, B. 2017. Pitfalls to avoid when using phage display for snake toxins. Toxicon. 126, February: 79-89.
22. Laustsen, A. H., Johansen, K. H., Engmark, M., Andersen, M. R. 2017. Recombinant snakebite antivenoms: A costcompetitive solution to a neglected tropical disease? PLOS Neglected Tropical Diseases. February 3: 1-14 .                                                                                                                         
23. Laustsen, A. H. 2016. Recombinant Antivenoms. Department of Drug Design and Pharmacology Faculty of Health and Medical Sciences University of Copenhagen Universitetsparken 2, DK-2100 Copenhagen, Denmark. andreas. Thesis.                                                                                                                                     
24. Laustsen, A. H., Engmark, M., Milbo C., Johannesen,.J., Lomonted, B., Gutiérrez, J. M. Lohse,.B. 2016. From Fangs to Pharmacology: The Future of Snakebite Envenoming Therapy. Current Pharmaceutical Design. 22: 5270-5293.     
 25. Li, Y., Han, W.Y., Li, Z.J., Lei, L.C., 2009. Klebsiella pneumoniae MrkD adhesin-mediated immunity to respiratory infection and mapping the antigenic epitope by phage display library. Microb Pathog. 46:144-9.                                                                                                                                    
26. Mohammadi, E., Shafiee, F., Shahzamani, K., Ranjbar, M.M., Alibakhshi, A., Ahangarzadeh, S., Beikmohammadi, L., Shariati, L., Hooshmandi, S., Ataei, B., Javanmard, S.H. 2021. Novel and emerging mutations of SARS-CoV-2: Biomedical implications. Biomedicine & Pharmacotherapy. Apr 23;139:111599. doi: 10.1016/j.biopha.2021.111599 .                                                                                                                              
27. Motedayen, M.H., Nikbakht, G.R., Rasaee, M.J., Zare Mirakabadi, A. 2015. Construction of a human recombinant polyclonal Fab fragment antibody library using peripheral blood lymphocytes of snake bitten victims. Archives of Razi Institute. 70(4): 255-261                                                                                                                                     28. Motedayen, M.H., 2015. Production of recombinant Fab fragment of polyclonal antibody against venom of poisonous snakes, using a phage display library technique and evaluation of its antivenom activity in Syrian laboratory mouse. University of Tehran, Faculty of Veterinary Medicine, Tehran, Iran, No: 499, Thesis.                                                                                                                                           
29. Motedayen, M.H., Nikbakht Brojeni, G.H., Rasaee, M.J., Zare Mirakabadi, A., khorasani, A., Eizadi, H., Ranjbar, M.M., Azimi, S.M., Esmaelizad, M. 2018. Production of a Human Recombinant Polyclonal Fab Antivenom against Iranian Viper Echis carinatus. Archives of Razi Institute. 73(4): 287-294.                                                                                                                                 
30. Omidfar, K., Daneshpour,M. 2015. Advances in phage display technology for drug discovery. Expert Opin Drug Discov.0: 1-19.   
31. Nokhodian, Z., Ranjbar, M. M., Nasri, P., Kassaian, N., Shoaei, P., Vakili, B., Rostami, S., Ahangarzadeh, S., Alibakhshi, A., Yarian, F., Javanmard, S. H., & Ataei, B. 2020. Current status of COVID-19 pandemic; characteristics, diagnosis, prevention, and treatment. Journal of research in medical sciences. Official journal of Isfahan University of Medical Sciences. 25(3): 101. doi.org/10.4103/jrms.JRMS_476_20.
32. Rahbarizadeh, F., Rasaee, M.J., Frozandeh, M.M. and Allameh, A.A. (2003).  Production of a recombinant VHH antibody against MUC1 with phage display method and determination of its characteristics. Thesis, Tarbiat Modarres University.
33. Rami, A., Behdani,. M., Yardehnavi, N., Habibi-Anbouhi, M., Kazemi,- Lomedasht,.F. 2017. An overview on application of phage display technique in immunological studies .Asian Pac J Trop Biomed. 7(7): 599–602.                                                                                                                                          
34. Rakonjac, J. 2012. Filamentous bacteriophages: biology and applications. Chichester: eLS. John Wiley & Sons Ltd. http://dx.doi.org/ 10.1002/9780470015902.a0000777.                                                                                                          
35. Rakonjac, J., Bennett, N.J., Spagnuolo, J., Gagic, D., Russel, M. 2011. Curr. Issues Mol. Biol. 13: 51–76.                                                                                                                                            
36. Ranjbar, M.M., Ebrahimi, M.M., Shahsavandi, S., Farhadi, T., Mirjalili, A., Tebianian, M., Motedayen, M.H. 2019. Novel Applications of Immuno-bioinformatics in Vaccine and Bio-product Developments at Research Institutes. Archives of Razi Institute. 74 (3): 219-233.
37. Rodriguez, d. V., R.C., Schwartz, E.F., Possani, L.D., 2010. Mining on scorpion venom biodiversity. Toxicon. 56: 1155- 116.
38. Solomon, B. 2007. Active immunization against Alzheimer’s beta-amyloid peptide using phage display technology. Vaccine. 25:3053-6.                                                                                                                                                              
39. Vithayathil, R., Hooy, R.M., Cocco, M.J. Weiss, G.A. 2011. J Mol Biol. 414: 499– 510.
40. WHO, 2013. Animal Bites. World Health Organization, Geneva. Available in: http:// www.who.int/mediacentre/factsheets/fs373/en/.
41. Wu, C. H., Liu, I. J., Lu, R.M., Wu, H. C. 2016.  Advancement and applications of peptide phage display technology in biomedical science. Journal of Biomedical Science. 23(8): 1-14.