Effects of Partial Replacement of Macroalgae (Sargassum ilicifolium) with Fish Meal on Intestinal Tissue Structure in Asian Seabass (Lates calcarifer)

Document Type : Short Communication

Authors

1 Department of Fisheries, Faculty of Nano and Bio Science and Technology, Persian Gulf University, Bushehr, Iran.

2 Department of Fisheries, Faculty of Marine Science and Technology, Persian Gulf University, Bushehr, Iran

3 Persian Gulf Research Institute, Persian Gulf University, Bushehr, Iran, v.morshedi@gmail.com, v.morshedi@pgu.ac.ir

4 Agriculture Research, Education and Extension, South Iran Aquaculture Research Center, Iran Fisheries Science Research Institution, Ahvaz, Iran

Abstract

The effect of replacement brown macroalgae (Sargassum ilicifolium) with fishmeal, intestinal tissue structure of Asian Lates calcarfer, with an initial weight of 29±1 g, in a completely randomized design with 4 treatments and three triplicates for 6 weeks was done. The experimental diets were prepared using a control diet and three diets including brown macroalgae with replacement at level 3, 6 and 9%. The obtained results indicated that there was no significant difference between enterocyte length, villi width and muscle thickness in intestinal tissue between different treatments and the control group (P>0.05). However, replacement of sargassum algae at the level of 6% on the villi length and villi uptake level of intestinal tissue showed a significant difference (P<0.05). According to the results, the use of sargassum macroalgae at the level of 6%, in the diet of Asian seabass, had a positive effect on studied parameters of intestinal tissue.

Keywords


1.    Abdulmanafi, A. B., Liem, P.T., Van, M. V., Ambak, M. A. 2006. Histological ontogeny of the digestive system of marble goby (Oxyeleotris marmoratus) larvae. Journal of Sustain and Managing Science. 2: 79-86.
2.    Anna, S., Coughlan, S. and Michael, D., 2009. The red alga Porphyra dioica as a fish-feed ingredient for rainbow trout (Oncorhynchus mykiss): effects on growth, feed efficiency, and carcass composition. Journal of Applied Phycology. 21: 617–624.
3.    Araujo, M., Rema, P., Sousa-pinto, I., Cunna, L.M., Peixoto, M.J., Pires, M.A., Seixas, F., Brotas, V., Beltran, C., Valente, L. M. P. 2015. "Dietary inclusion of IMTA- Cultivated Gracilaria varmiculophylla in rainbow trout Oncorhynchus mykiss diets: effects on growth, intestional morphology, tissue pigmentation, and immunological response." Journal of Animal Ecology. 85(2): 476-486.
4.    Bouraoui, L., Sánchez-Gurmaches, J., Cruz-Garcia, L., Gutiérrez, J., Benedito-Palos, L., Pérez-Sánchez, J., Navarro, I., 2011. Effect of dietary fish meal and fish oil replacement on lipogenic and lipoprotein lipase activities and plasma insulin in gilthead sea bream (Sparus auratus). Aquaculture Nutrition. 17: 54–63.
5.    Brune, D.E., 2011. Aquaculture, Algae and Biofuels; Three Decades of  Microalgae Lessons, Southeast Bioenergy Conference. (Retrieved from http://www.ncaquaculture. org/pdfs/brune.pdf).
6.    Collins, S.A., Shand, P.J., Drew, M.D., 2011. Stabilization of linseed oil with vitamin E, butylated hydroxytoluene and lipid encapsulation affects fillet lipid composition and sensory characteristics when fed to rainbow trout. Animal Feed Science and Technology. 170: 53– 62.
7.    Glencross, B., 2006. The nutritional management of barramundi, Lates calcarifer – a review. Aquaculture Nutrition. 12: 291–309.
8.    Hafezieh, M., Hosseini, S.H., Ajdari, D., Hossein Pour, H., 2014. Nutritional Value Evaluation of Two Seaweed of the Gulf of Oman: Sargassum illicifolium and Gracillaria cortica. Journal of Oceanography. 5(17): 83-90 (In Persian).
9.    Heidarieh, M., Mirvaghefi, A. R., Akbari, M., Farahmand, H., Sheikhzadeh, N., Shahbazfar, A. A., & Behgar, M. 2012." Effect of dietary Ergosan on growth performance, digestive enzymes, intestinal histology, hematological parameters and body composition of rainbow trout (Oncorhynchus mykiss)." Fish Physiology and Biochemistry. 38: 1169–1174.
10.    Kaushik, S. J. 1994. Nutrition requirement supply and utilization in the contex of carp culture. Aquaculture. 129: 191-200.
11.    Khodabandeh, S., Charmantier,G., Charmantier-Daures, M. 2006. Immunolocalization of Na+/K+-ATPase in osmoregulatory organs during the embryonic and post-embryonic development of the lobster Homarus gammarus. J Crust Biol. 26: 515-523.
12.    Marcouli, P.A., Alexis, M. N., Andriopoulou, A. and Georgudaki, J., 2006. Dietary lysine requirement of juvenile gilthead seabream (Sparus aurata L.). Aquaculture Nutrition. 12: 25-33.
13.    Merrifield, D.L., Harper, G.M., Mustafa, S., Carnevali, O., Picchietti, S., Davies, S. J. 2011. "Effect of dietary alginic acid on juvenile tilapia (Oreochromis niloticus) intestinal microbial balance. "intestinal histology and growth performance. Cell Tissue Research. 344:135–146.
14.    Morshedi, V., Nafisi Bahabadi, M., Sotoudeh, E., azodi, M., Hafezieh,M. 2017. Nutritional evaluation of Gracilaria pulvinata as partial substitute with fish meal in practical diets of barramundi (Lates calcarifer). Journal of Applied Phycology. 30: 619-628.
15.    Nandeesha M.C.; Gangadhara, B., Varghese, T.J. and Keshavanath, P., 1998. Effect of feeding Spirulina platensis on the growth, proximate composition nd organoleptic quality of common carp, Cyprinus carpio. Aquaculture Research. 29: 305-312. 
16.    Ortega,M. A., Gil, A. and Sánchez-Pozo, A., 1995: Maturation status of small intestine   epithelium in rats deprived of dietary nucleotides. Life Sci. 56: 1623–1630.
17.    Picchietti, S., Mazzini, M., Taddei, A.R., Renna, R., Fausto, A.M., Mulero, V., Carnevali, O., Cresci, A., and Alelli, L. 2007. Effects of administration of probiotic strains on GALT of larval gilthead seabream: Immunohistochemical and trastructural studies. Fish and Shelfish. 22: 57-67.
18.    Rašković Božidar, S., Stanković Marko, B., Marković Zoran, Z., Poleksić Vesna, D. 2011. Histological methods in the assessment of different feed effects on liver and intestine of fish. Journal of Agricultural Sciences. 56 (1): 87-100.
19.    Sotoudeh, E., Mardani. F. 2018. Antioxidant-related parameters, digestive enzyme activity and intestinal morphology in rainbow trout (Oncorhynchus mykiss) fry fed graded levels of red seaweed, Gracilaria pygmaea. Aquaculture Nutrition. 24: 777-785. 
20.    Tangestani, N., 2019. Effects of dietary macroalgae (Gracilaria pygmaea) on immune response, intestine tissues, the activity of antioxidant enzymes of Asian sea bass (Lates calcarifer). Master of Science Thesis (In Persian). 
21.    Teresa, O., Michal, k.k., Jacek, V. 2006. Morphological changes of digestive structures in starved tench Tinca tinca (L.) juveniles. Aquaculture International. 14: 113-126.
22.    Valente,L.M.P., Gouveia, A., Rema, P., Matos, J., Gomes, E.F. and Pinto, IS., 2006. Evaluation of three seaweeds Gracilaria bursa-pastoris, Ulva rigida and Gracilaria cornea as dietary ingredients in European sea bass (Dicentrarchus labrax) juveniles. Aquaculture. 252: 85–96.
23.    Vizcaíno, A. J., Mendes, S. I., Varela, L. J., Ruiz‐Jarabo, I., Rico, R., Figueroa. F., Abdala, R., Moriñigo, M. A., Mancera, J. M., Alarcón, F. J. 2015. Growth, tissue metabolites and digestive functionality in (Sparus aurata) juveniles fed different levels of macroalgae, (Gracilaria cornea) and (Ulva rigida). Aquaculture Research. 47: 3224-3238.
24.    Zeynali, M., Nafisi Bahabadi, M., Morshedi, V., Ghasemi, A., Torfi Mozanzadeh, M. 2020. Replacement of dietary fishmeal with Sargassum ilicifolium meal on growth, innate immunity and immune gene mRNA transcript abundance in Lates calcarifer juveniles. Aquaculture Nutrition. 26: 1657-1668.