Study of Protease Properties in Pseudocereastes Percicus Venom

Document Type : Full Research Paper

Authors

1 Proteomics and Biochemistry Department, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran

2 Department of Microbiology, School of Specialized Science, Science and Research Branch, Islamic Azad University, Tehran, Iran

Abstract

Snakes are one of the most useful animals in the world for the production of medicines, sera and vaccines that are made from the venom. Venomous snakes have many therapeutic applications and are very useful in biochemical research. Snake venom is an oily liquid, white to yellow with a slightly acidic pH and is a complex mixture of polypeptides, toxic proteins, enzymes, pharmaceuticals and non-protein substances. Venom of all snakes is not the same, although it is believed that venom of snakes originated from common biological ancestors.
The aim of this study was to determine the activity of protease enzyme in venom of horned snake from different regions. In this study, the venom of the horned snake from three regions of Semnan, Kerman and Khuzestan was investigated. At first, the venom protein concentration of this snake was determined using Lowry and Bradford methods, which was reported to be 950 mg / ml (95%). In the next step, the number of peptides and molecular weight of these proteins were determined by vertical electrophoresis, which were performed in both reducing and non-reducing methods. And the molecular weight range of 15 to 190 kDa was estimated to have relative similarities in Khuzestan, Kerman and Semnan. Native electrophoresis and casein substrate electrophoresis confirmed the proteolytic activity of ruminant venom and quantitative determination of venom proteolytic activity was determined by BAPNA dilution and casein digestion
11.56 U/ml.

Keywords


1. Avner Bdolah, 1986. Comparison of venoms from two subspecies of the false horned viper Pseudocerastes persicus. Toxicon ,Volume 24, Issue 7, 1986, Pages 726-729 https://doi.org/10.1016/0041-0101(86)90036-X
2. Amininasab M, Elmi MM, Endlich N, Endlich K, Parekh N, Naderi-Manesh H, Schaller J, Mostafavi H, Sattler M, Sarbolouki MN, Muhle-Goll C. 2004. Functional and structural characterization of a novel member of the natriuretic family of peptides from the venom of Pseudocerastes persicus. FEBS Lett . 16;557(1-3):104-8. PMID: 14741349 DOI: 10.1016/s0014-5793(03)01455-8
3. Broadley CM. 1968.The venemous snakes in Central and South Africa. In: Bücherl, W, Buckley E, Deulofeu V (eds) Venomous Animals and Their Venoms. Academic Press, New York, London4: 433-436.
4. Denis V. Anderade and Augusto S.1999. Relationship of venom ontogeny and diet in Bothrops. Departamento de Zoologia 200-204. http://w.w.w.jstor.org/stable/3893080.
5. Erlanger. B,F ,.Kokowsky., N and Cohen,. W. 1961,. The preparation and properties of two new chromogenic substrates of trypsin. Archives of Biochemistry and Biophysics Volume 95, Issue 2, 271-278 https://doi.org/10.1016/0003-9861(61)90145-X
6. Gabriela D. Tanaka, Maria de Fa ´tima D. Furtado, Fernanda C. V. Portaro, Osvaldo Augusto Sant’Anna1, Denise V. Tambourgi. 2010. Diversity of Micrurus Snake Species Related to Their Venom Toxic Effects and the Prospective of Antivenom Neutralization. journal.pntd. Volume 4 Issue 3. DOI:10.137/journal.pntd.0000622.
7. Ghorbanpur M, Zare M A, Zokeef, Zolfagarrian H, 2010, indentification and partial purify ication of an anticoagulant factor from the venom of the Iranian snake agkistrodonhalys, J. Venom. Anim. Toxins incl. Trop. Dis vol.16 no. http://dx.doi.org/10.1590/S1678-91992010005000005
8. Etsuko Oyama, Hidenobu Takahashi,2017. Structures and Functions of Snake Venom Metalloproteinases (SVMP) from Protobothrops venom Collected in Japan. Molecules 22,1305: 2-11 DOI:10.3390/molecules22081305
9. Golchinfar, F. Madani, Rasool. Emami, T. 2015. Designing a competitive ELISA for evaluation of anti-snake venom serum potency. Veterinary journal (pajuhesh & sazandegi). 110: 9-16
10. Hsiang A, Davis M. 2015. The origin of snakes : revealing the ecology, behavior and evolutionary history of early snakes using genomics, phenomenics and the fossil record. BMC Evolutionary Biology, 15:87.
http://doi.org/10.1186/s12862-015-0358-5. 
11. Koh, DC; Armagun, A; Jeaseelan, K. 2006. Snake venom components and their applications biomedicine. cell 63: 3030-41. PMID:17103111 DOI:10.1007/s00018-006-6315-0
12. Magalhães A1, Magalhães HP, Richardson M, Gontijo S, Ferreira RN, Almeida AP, Sanchez EF.2007 Purification and properties of a coagulant thrombin-like enzyme from the venom of Bothrops leucurus. Comp Biochem Physiol A Mol Integr Physiol. ;146(4):565-75. PMID: 16481207 
DOI: 10.1016/j.cbpa.2005.12.033
13. Mary Ann K, Markwell, Suzanne M. 1978. A modification of the Lowry procedure to simplify protein determination in memberan and lipoprotein samples. 87:206-210. http://doi.org/10.1016/0003-2697(78)90586-9.
14. Nalbantsoy,A; Karabay-Yavasoglu, NU; Sayim, F; Deliloglu-Gurhan, I; Arikan, H; Yildiz, MZ. 2012. Determination of in vivo toxicity and in vitro cytotoxicity of venom from the Cypriot blunt-nosed viper Macrovipera lebetina lebetina and antivenom production.Vol.18: 208-216.
http://dx.doi.org/10.1590/s1678-91992012000200011. 
15. Oukkache, N.; Lalaoui, M.; Ghalim, N. 2012. General characterization of venom from the Moroccan snakes Macrovipera mauretanica and Cerastes cerastes. J. Venom. Anim. Toxins Trop. Dis 18: 411–420. 
http://dx.doi.org/10.1590/s1678-91992012000400009.
16. Ponce-Soto LA1, Bonfim VL, Novello JC, Navarro Oviedo R, Yarlequé Chocas A, Marangoni S. 2007 Isolation and characterization of a serine protease, Ba III-4, from Peruvian Bothrops atrox venom. Protein J. 2;26(6):387-94. PMID: 17522968 DOI: 10.1007/s10930-007-9078-z
17. RanaWaka, David G, Lallo and H Janaka de silva. 2013. Neurotoxicity in snake bite. Oct:e2302. Vol.7(10).
PMCID:PMC3794919. DOI:10.1371/Journal.pntd.0002302. 
18. Rm Kini . 2005. Structure – function relationships and mechanism anticoagulant phospholipase A2 enzymes from snake venoms.Toxicon. Elsevier. 45(8):1147-61 PMID:15922780.
DOI:10.1016/j.toxicon.2005.02.018.
19. Silva-Junior F P, Guedes HLM, Garvey L C, Bourguignonc, Enrico DC, Salvatore GDS, 2007, BJ-48, a novel thrombin-like enzyme from the Bothrops jararacussu venom with high selectivity for Arg over Lys in P1: Role of N-glycosylation in thermos stability and active site accessibility., toxicon 50(1):18-31. PMID: 17433397 DOI: 10.1016/j.toxicon.2007.02.018
20. Silva MF, Mota CM, Miranda Vdos S, Cunha Ade O, Silva MC, Naves KS, de Oliveira F, Silva DA, Mineo TW, Santiago FM. 2015. Biological and Enzymatic Characterization of Proteases from Crude Venom of the Ant Odontomachus bauri. Toxins (Basel). 30;7(12):5114-28. doi: 10.3390/toxins7124869. PMID: 26703729
21. Vaiyapuri S1, Wagstaff SC, Harrison RA, Gibbins JM, Hutchinson EG.. 2011
Evolutionary Analysis of Novel Serine Proteases in the Venom Gland Transcriptome of Bitis gabonica rhinoceros. PLoS One. 6(6):e21532. doi: 10.1371/journal.pone.0021532. 
22. Tabatabaei,M. Toofani, M. 2001. Determination of biological characteristics of Persian horned viper venom. 0ffice of planning & coordination of research affairs.p:2-6.cod:19609.
23. Volodymyr Chernyshenkoa.,Tetyana Platonovaa., Yevgen Makogonenkoa., Andriy Rebrieva., Lyuba Mikhalovskab., Tamara Chernyshenkoa Serhiy., Komisarenkoa.2014 . Fibrin(ogen)olytic and platelet modulating activity of a novel protease from the Echis multisquamatis snake venom. Biochimie. Volume 105: 76-83, https://doi.org/10.1016/j.biochi.2014.06.015
24. Zaqueo KD, Kayano AM, Simões-Silva R, Moreira-Dill LS, Fernandes CF, Fuly AL, Maltarollo VG, Honório KM, da Silva SL, Acosta G, Caballol MA, de Oliveira E, Albericio F, Calderon LA, Soares AM, Stábeli RG.2014 . Isolation and biochemical characterization of a new thrombin-like serine protease from Bothrops pirajai snake venom. Biomed Res Int. 595186. doi: 10.1155/2014/595186 PMID: 24719874.