Phenotypic detection of beta and metallo lactamases enzymes in Bacillus subtilis strains isolated from raw milk and cheese samples

Document Type : Full Research Paper

Author

Department of Microbiology, University of Mohaghegh Ardabili, Ardabil, Iran

Abstract

Bacillus subtilis, a soil bacteria, Gram-positive, rod-shaped, which naturally secretes large amounts of various proteins with high concentrations into the culture medium. The aim of present study was to evaluate the phenotype detection of beta-lactamase and metalo-beta lactamase in Bacillus subtilis strains isolated from samples of milk and cheese.In this study, 100 samples of raw milk and cheese from production and distribution centers received and were cultured. Suspected Bacillus subtilis colonies were identified by biochemical methods. To measure the susceptibility was used Kirby-Bauer method, for broad-spectrum beta-lactamase enzymes and metalo-betalactamase was used Combination Disk and E-test MBL method respectively.The highest amount of resistance in isolates producing beta-lactamase enzyme was related to the antibiotic erythromycin (75%) and the lowest resistance to the antibiotic cefotaxim (44/60%) and cefixime(46/20%). The amount of resistance in isolates producing MBL enzymes was high (100%) with the exception of antibiotics cefotaxim (64/60%) and cefixime (67.40%),the lowest level resistance was observed.The results of this study show food contamination with strains resistant to the antibiotics increases the risk of transferring antibiotic resistance to intestinal bacterial flora of consumers.

Keywords

Main Subjects



1. heng, J., Guan, Z., Cao, S., Peng, D., Ruan, L., Jiang, D., Sun, M., 2015. Plasmids are vectors for redundant chromosomal genes in the Bacillus cereus group. BMC genomics 16:6.
2. Burgess, S.A., Lindsay, D., Flint, S.H., 2010. Thermophilic bacilli and their importance in dairy processing. International Journal of Food Microbiology 144:215-25.
3. Baquero, M.R., Nilsson, A.I., del Carmen Turrientes, M., Sandvang, D., Galan, J.C., Martinez, J.L., Frimodt-Moller, N., Baquero, F., Andersson, D.I. 2004. Polymorphic Mutation Frequencies in Escherichia coli: Emergence of Weak Mutators in Clinical Isolates. J Bacteriol 186(16): 5538-5542.
4. Bonomo, R.A., Szabo, D. 2006. Mechanisms of Multidrug Resistance in Acinetobacter Species and Pseudomonas aeruginosa. Clin Infect Dis 43(Suppl 2): S49-S56.
5. Rao, P.N., Prasad, S.R., 2016. Detection of extended-spectrum beta-lactamases. Indian Journal of Medical Microbiology 34:251-2.
6. Bonomo, R.A., 2017. beta-Lactamases: A Focus on Current Challenges. Cold Spring Harbor Perspectives in Medicine 3;7(1).
7. Church, D., Elsayed, S., Reid, O., Winston, B., Lindsay, R. 2006. Burn Wound Infections. Clin Microbiol Rev 19(2): 403-434.
8. Colodner, R. 2005. Extended-spectrum -lactamases: A challenge for clinical microbiologists and infection control specialists. Am J Infect Control 33(2): 104-107.
9. Kazeminezhad B, Bostanmanesh Rad A, Gharib A, Zahedifard S. blaVIM and blaIMP Genes Detection in Isolates of Carbapenem Resistant P. aeruginosa of Hospitalized Patients in Two Hospitals in Iran. 2017. Iran J Pathol.1;12(4):392-6.
10. Dias Neto, J.A., Silva, L.D.M.d., Martins, A.C.P., Tiraboschi, R.B., Domingos, A.L.A., Suaid, H.J., Tucci Jr, S., Cologna, A.J. 2003. Prevalence and bacterial susceptibility of hospital acquired urinary tract infection. Acta Cir Bras 18 (supple 5): 36-38.
11. Drieux, L., Brossier, F., Sougakoff, W., Jarlier, V. 2008. Phenotypic detection of extended-spectrum β-lactamase production in Enterobacteriaceae: review and bench guide. Clin Microbiol Infect 14: 90-103.
12. El-Shouny, W.A., Ali, S.S., Sun, J., Samy, S.M. and Ali, A., 2018. Drug resistance profile and molecular characterization of extended spectrum beta-lactamase (ESβL)-producing Pseudomonas aeruginosa isolated from burn wound infections. Essential oils and their potential for utilization. Microb pathog 116:301-312.
13. Pohl, S. and Harwood, C.R., 2010. Heterologous protein secretion by Bacillus species: from the cradle to the grave. In Advances in Applied Microbiology (Vol. 73, pp. 1-25). Academic Press.
14. Howard, C., van Daal, A., Kelly, G., Schooneveldt, J., Nimmo, G., Giffard, P.M. 2002. Identification and Minisequencing-Based Discrimination of SHV -Lactamases in Nosocomial Infection-Associated Klebsiella pneumoniae in Brisbane, Australia. Antimicrob Agents Chemther 46(3): 659-664.
15. Japoni, A., Alborzi, A., Kalani, M., Nasiri, J., Hayati, M., Farshad, S. 2006. Susceptibility patterns and cross-resistance of antibiotics against Pseudomonas aeruginosa isolated from burn patients in the South of Iran. Burns 32(3): 343-347.
16. Choudhuri, A.H., Chakravarty, M. and Uppal, R., 2017. Epidemiology and characteristics of nosocomial infections in critically ill patients in a tertiary care Intensive Care Unit of Northern India. Saudi Journal of Anaesthesia, 11(4), 402.
17. Luzzaro, F., Endimiani, A., Docquier, J.-D., Mugnaioli, C., Bonsignori, M., Amicosante, G., Rossolini, G.M., Toniolo, A. 2004. Prevalence and characterization of metallo-β-lactamases in clinical isolates of Pseudomonas aeruginosa. Diag Microbiol Infect Dis 48(2):131-135.
18. Magalhães, V., Lins, A.K., Magalhães, M. 2005. Metallo-beta-lactamase producing Pseudomonas aeruginosa strains isolated in hospitals in Recife, PE, Brazil. Braz J Microbiol 36(2): 123-125.
19. Bahrami, A., Shamsi, M., Bahrami, A., soltani, s., Ahmadi, M., Talebimaymand, F., and Abasian, L. (2016) Staphylococcus aureus Isolated from Bovine Mastitis Milk Livestock and the Study of Antibiotic Resistance, medilam 24:18-26
20. Persson, Y., Nyman, A.K.J. and Grönlund-Andersson, U., 2011. Etiology and antimicrobial susceptibility of udder pathogens from cases of subclinical mastitis in dairy cows in Sweden. Acta Veterinaria Scandinavica, 53(1):36.
21. PA W. Performance standards for antimicrobial susceptibilitytesting. CLSI document M100-S25, 25th informational supplement Clinical Laboratory Standard Institute. 2015.
22. Nordmann, P., Poirel, L. 2002. Emerging carbapenemases in Gram-negative aerobes. Clin Microbiol Infect 8(6): 321-331.
23. Pitout, J.D.D., Gregson, D.B., Poirel, L., McClure, J.A., Le, P., Church, D.L. 2005. Detection of Pseudomonas aeruginosa Producing Metallo- -Lactamases in a Large Centralized Laboratory. J Clin Microbiol 43(7): 3129-3135.
24. Quale, John M., Landman, D., Bradford, Patricia A., Visalli, M., Ravishankar, J., Flores, C., Mayorga, D., Vangala, K., Adedeji, A. 2002. Molecular Epidemiology of a Citywide Outbreak of Extended‐Spectrum β‐Lactamase–Producing Klebsiella pneumoniae Infection. Clin Infect Dis 35(7): 834-841.
25. Gomaa, F.A.M., Helal, Z.H. and Khan, M.I., 2017. High Prevalence of blaNDM-1, blaVIM, qacE, and qacEΔ1 Genes and Their Association with Decreased Susceptibility to Antibiotics and Common Hospital Biocides in Clinical Isolates of Acinetobacter baumannii. Microorganisms, 5(2):18.
26. Sinha, M., Srinivasa, H., Macaden, R. 2007. Antibiotic resistance profile & extended spectrum beta-lactamase (ESBL) production in Acinetobacter species. Indian j medical rese 126(1): 63-67.
27. Tankhiwale, S.S., Jalgaonkar, S.V., Ahamad, S., Hassani, U. 2004. Evaluation of extended spectrum beta lactamase in urinary isolates. Indian j med res 120(6): 553-556.
28. Wang, J., Ai, X., Mei, H., Fu, Y., Chen, B., Yu, Z. and He, J., 2013. High-throughput identification of promoters and screening of highly active promoter-5′-UTR DNA region with different characteristics from Bacillus thuringiensis. PLoS One, 8(5): e62960.
29. Yousefi, S., Farajnia, S., Nahaei, M.R., Akhi, M.T., Ghotaslou, R., Soroush, M.H., Naghili, B., Jazani, N.H. 2010. Detection of metallo-β-lactamase–encoding genes among clinical isolates of Pseudomonas aeruginosa in northwest of Iran. Diag Microbiol Infect Dis 68(3): 322-325.