Antioxidative indices and liver histology of rainbow trout (Oncorhynchus mykiss) fed diets containing nickel oxide nanoparticles and silymarin

Document Type : Full Research Paper

Authors

1 Department of Fisheries, Faculty of Natural Resources, Urmia University, I.R. of Iran

2 Department of Comparative Histology and Embryology, Faculty of Veterinary Medicine, Urmia University, I.R. of Iran.

3 Department of Fisheries, Faculty of Natural Resources, Urmia University, I.R. of Iran.

4 Department of Nanotechnology, Faculty of Science, Urmia University, I.R. of Iran.

Abstract

Recent nano-technological developments have resulted in outstanding industrial developments in one hand and aroused concerns regarding their discharge into water bodies and subsequent toxicity to aquatic lives in the other hand. This study evaluated the antioxidative indices and liver histology of rainbow trout (Oncorhynchus mykiss) fed diets containing nickel oxide nanoparticles and silymarin. Therefore, 1200 fish (3.83±0.01g) were randomly allotted into 8 distinct treatments including control group and seven other experimental groups receiving various levels of dietary nickel oxide nanoparticles (0, 100 and 500 mg/kg feed) and silymarin (0 and 1 g/kg feed). The experiment lasted for 60 days with 3 respective replicates. Results showed that the total antioxidative capacity of various experimental groups did not significantly differ (P>0.05), whilst catalase showed significantly different levels of activity amongst various treatments (P≤0.05). Glutathione peroxidase did not show considerable differences among experimental groups, on the contrary superoxide dismutase had significantly different activities among treatments (P≤0.05). Histological examinations revealed that preventive and curative administration of nickel oxide nanoparticles did not have considerable positive effects on curbing pathological outcomes of nanoparticles on the tissue. However, to elucidate a comprehensive conclusion in this regard, further studies concerning various silymarin inclusion levels and exposure time are required.

Keywords



1. Ali, M., Mirvaghefi, A., Poorbagher, H., Asadi, F. 2014. Studying the effect of vitamin E selenium and C supplement on antioxidant defense activity and lipid peroxidation index of rainbow trout (Oncorohynchus mykiss) in exposure to sub-acute Diazinon. Journal of Applied Ichthyological Research, 2 (1) :75-92.
2. Banaee, M., Mirvagefei, A. R., Rafei, G. R., Sureda Gomila, A. 2011. Effects of oral administration of silymarin on biochemical parameters of blood in rainbow trout (Oncorhynchus mykiss). Journal of fisheries, Iranian Journal of Natural Resources, 63(4): 271-286.
3. Banaee, M., Sureda, A., Shahaf, S., Fazilat, N. 2015. Protective Effects of Silymarin Extract on Malthion-Induced Zebra Cichlid (Cichlasoma nigrofasciatum) Hepatotoxicity. Iranian Journal of Toxicology, 9(28): 1239-1246.
4. David, B. 2008. How meaningful are the results of nanotoxicity studies in the absence of adequate material characterilaztion.Toxicol Sciences, 101:183-185.
5. Eisler, R. 1998. Nickel hazards to fish, wildlife and invertebrates: a synoptic review. Biological Science Report USGS/BRD/BSR-1998-0001.
6. Federici, G., Shaw, B. J., & Handy, R. D. 2007. Toxicity of titanium dioxide nanoparticles to rainbow trout (Oncorhynchus mykiss): gill injury, oxidative stress, and other physiological effects. Aquatic Toxicology, 84(4): 415-430.
7. Gazak, R., Walterova, D., & Kren, V. 2007. Silybin and silymarin-new and emerging applications in medicine. Current Medicinal Chemistry, 14(3): 315-338.
8. Golban, A., Akbarian, A., Saleh, H. 2011.plytogenics in animal nutrition: (Natural concepts to optimize gut health and performance). Mashhad Ferdowsi University.
9. Halliwell, B. 2001. Free Radicals and other reactive species in Disease. Encyclopedia of Life Sciences.
10. Hao, L., Chen, L. 2012. Oxidative stress responses in different organs of carp (Cyprinus carpio) with exposure to ZnO nanoparticles. Ecotoxicology and Environmental safety, 80: 103-110.
11. Hosseini, N., Malekirad, A., Changizi Ashtiani, S., Nazemi, M. 2011. Free radicals scavenging activity of essential oils and different fractions of methanol extract of zataria multiflora, Salvia officinalis, Rosmarinus officinalis, Mentha pulegium and Cinnamomum zeylanicum. Journal Shahid Sadoughi Univ Med Sci, 20(1): 28-38.
12. Imanpour, m., MehdiPour, N. 2012. Toxic effects of iron, copper, nickel and zinc on morphological changes of the liver tissue White fish (Rutilus frissi kutum). The National Conference of Gorgan University of fishery resources in the Caspian Sea.
13. Imani, A., Sarvi Moghanlo, K., Khani, S. 2016. Pathology of copper nanoparticles on liver histoarchitecture and haemato-biochemical parameters of rainbow trout (Oncorhynchus mykiss) fingerlings before and after a recovery period. Veterinary Journal (Pajouhesh & Sazandegi), 29(113): 110-118.
14. Johari, S. A., Sourinejad, I., Barsch, N., Saed Moocheshi, S., Kaseb, A., Nazdar, N. 2014. Dose physical production of nanoparticles reduce their ecotoxicity? A case of lower toxicity of AgNPs produced by laser ablation to Zebrafish (Danio rerio). International Journal of Aquatic Biology, 2(4):188-192.
15. Karthigarani, M., Navaraj, P. 2012. Impact of nanoparticle on enzymes activity in Oreochromis mossambicus. IJSTR, 1, 13-17.
16. Kunjiappan, S., Bhattacharjee, C., Chowdhury, R. 2015. Hepatoprotective and antioxidant effects of Azolla microphylla based gold nanoparticles against acetaminophen induced toxicity in a fresh water common carp fish (Cyprinus carpio L). Nanomedicine Journal, 2(2): 88-110.
17. Li, Z. H., Zlabek,V., Velisek, J., Grabic, R., Machova, J., Kolarova, J., Li, P. 2011. Acute toxicity of carb amazepine to juvenile rainbow trout (Oncorhynchus mykiss): effects on antioxidant responses, hematological parameters and hepatic, Ecotoxicology and Environmental Safety,74:319–327.
18. Lourenco, J. F. C. 2012. Toxicological effects of TiO2 nanoparticles in two freshwater species: Carassius auratus and Corbicula fluminea (Doctoral dissertation, Universidade Da Beira Interior).
19. Magaye, R. R., Yue, X., Zou, B., Shi, H., Yu, H., Liu, K., Lin, X., Xu, J., Yang, C., Wu, A., Zhao, J. 2014. Acute toxicity of nickel nanoparticles in rats after intravenous injection, International Journal of Nanomedicine, 9: 1393–1402 .
20. Mohammadi Movahed, M. 2015. Effect of Iron oxide nanoparticles on antioxidant defense system and lipid peroxidation in carp (Cyprinus carpio). University of Guilan.
21. Mortazavy, S., Esmaili, A. S., Riyahi Bakhtiari, A. R. 2005.Determination and ratio nikel to vanadium from oil pollution in Pinctada radiate and Saccosterea cucullata in Coastal of Hormozgan Province. Iranian Journal of Natural Resources, 58(1): 1-14.
22. Mohamadifard, M., Nazem, H., Mottaghipisheh, J. 2016.The Effects of Copper Oxide Nanoparticles and Hydroalcoholic Extracts of Berberis vulgaris, Descurainia sophia and Silybum marianumon Catalase, Glutathione Peroxidase, and Malondialdehyde Concentration in Male Diabetic Rats. Journal Babol Univ Med Sci, 18(3): 54-61.
23. Ptashynski, M. D., Klaverkamp, J. F. 2002. Accumulation and distribution of dietary nickel in lake whitefish (Coregonus clupeaformis). Aquatic Toxicology, 58: 249- 264.
24. Rahdar, A., Aliahmad, M., Azizi, Y. 2015. NiO Nanoparticles: Synthesis and Characterization. Journal of Nanostructures, 5(2): 145-151.
25. Razavipour, S. T., Behnammorshedi, M. R., Razavipour, R., Ajdary, M. 2015. The toxic effect of nickel nanoparticles on oxidative stress and inflammatory markers. Biomedical Research, 26(2): 370-374.
26. Sanchez, W., Palluel, O., Meunier, L., Coquery, M., Porcher, J. M., Ait-Aissa, S. 2005. Copper-induced oxidative stress in three-spined stickleback: relationship with hepatic metal levels. Environmental toxicology and pharmacology, 19(1): 177-183.
27. Salmanian, Sh., Sadeghi Mahoonak, A. R., Alami, M., Ghorbani, M. 2013. Determination of antiradical and antioxidant activities and flavonoid content in hawthorn fruit (Crataegus elbursensis).Iranian Journal of Nutrition Sciences & Food Technology, 8(1): 177-185.
28. Sersen, F., Vencel, T., Annus, J. 2006. Silymarin and its components scavenge phenylglyoxylic ketyl radicals. Fitoterapia, 77: 525- 529.
29. Siddiqui, M. A., Ahamed, M., Ahmad, J., Majeedkhan, M. A., Musarrat, J., AL- Khedhairy, A. A., Alrokayan, S. A. 2012. Nickel oxide nanoparticles induce cytotoxicity, oxidative stress and apoptosis in cultured human cells that is abrogated by the dietary antioxidant curcumin. Food and Chemical Toxicology, 50: 641- 647.
30. Soto, C., Mena, R., Luna, J., Cerbón, M., Larrieta, E., Vital, P. 2004. Silymarin induces recovery of pancreatic function after alloxan damage in rats. Life Science. Sep,75(18): 2167-80.
31. Toman, R., Lukac, N., Massanyi, P., Hajkova, Z. 2013. Changes of blood parameters associated with nickel administration in rats. Animal Welfare, Ethology and Housing Systems, 9(3): 604-611.
32. Wang, J., Sun, P., Bao, Y., Liu, J., An, A. 2011. Cytotoxicity of single-walled carbon nanotube on pc12 cells. Toxicology in Vitro, 25: 242–250.
33. Zhang, J.F., Wang, X.R., Guo, H.Y., Wu, J.C., Xue, Y.Q. 2004. Effects of water-soluble fractions of diesel oil on the antioxidant defenses of the goldfish, Carassius auratus. Ecotoxicology and Environmental Safety, 58(1): 110-116.
34. Zhu, X., Zhou, J., Cai, Z. 2011. The toxicity and oxidative stress of TiO2 nanoparticles in marine abalone (Haliotis diversicolor supertexta). Marine pollution bulletin, 63(5): 334-338.