1- Dathe, M. and Wieprecht, T. (1999); Structural feature of helical antimicrobial peptides: their potential to modulate activity on model membranes and biological cells. Biochim Biophysica Acta J 1462: 71-87.
2- Battistuzzi, F.U., Feijao, A. and Hedges, S.B. (2004); A genomic timescale of prokaryote evolution: insights into the origin of methanogenesis, phototrophy, and the colonization of land. BMC Evol Biol 4: 44-49.
3- Luo, F., Sun, X., Qu, Z. and Zhang, X. (2016); Salmonella typhimurium-induced M1 macrophage polarization is dependent on the bacterial O antigen. World J Microbiol Biotechnol 32(2): 22-27.
4- Oh, M.H., Park, B.Y., Jo, H., Lee, S., Lee, H., Choi, K.H. and Yoon, Y. (2014); Use of Antimicrobial Food Additives as Potential Dipping Solutions to Control Pseudomona spp. Contamination in the Frankfurters and Ham. Korean J Food Sci Anim Resour 34(5): 591-596.
5- Malik, P., Singha, H., Goyal, S.K., Khurana, S.K., Tripathi, B.N., Dutt, A., et al. (2015); Incidence of Burkholderia mallei infection among indigenous equines in India. Vet Rec Open 24(2): 87-94.
6- Kuhn-Nentwig, L. (2003); Antimicrobial and cytolytic peptides of venomous arthropods. Cellular and molecular life sciences 60: 2651-2668.
7- Choi, J.H., Jang, A.Y., Lin, S., Lim, S., Kim, D., Park, K., et al. (2015); Melittin, a honeybee venom derived antimicrobial peptide, may target methicillin resistant Staphylococcus aureus. Mol Med Rep 12(5): 6483-6490.
8- Mirshafiey, M. (2007); Venom therapy in multiple sclerosis, A Review. Neuropharmacology 53: 353-361.
9- Hider, R.C. (1988); Honeybee venom: A rich source of pharmacologically active peptides. Endeavour 12(2): 60-65.
10- Lowry, O.H., Rosebrough, N.J., Farr, A.L. and Randall, R.J. (1951); Protein measurement with the Folin phenol reagent. J Biol Chem 193: 265-275.
11- Babaie, M., Zolfagharian, H., Salmanizadeh, H., Mirakabadi, A. Z. and Alizadeh, H. (2013); Isolation and partial purification of anticoagulant fractions from the venom of the Iranian snake Echis carinatus. Acta Biochimica Polonica 60(1): 17-20.
12- Boorn, K.L., Khor, Y.Y., Sweetman, E., Tan, F., Heard, T.A. and Hammer, K.A. (2010); Antimicrobial activity of honey from the stingless bee Trigona carbonaria determined by agar diffusion, agar dilution, broth microdilution and time-kill methodology. J Appl Microbiol 108(5): 1534-1543.
13- Altmann, F., Kubelka, V., Staudacher, E., Uhl, K. and Marz, L. (1991); Characterization of the isoforms of Phospholipase A2 from honeybee venom. Insect Biochem 21(5): 467-472.
14- Hegazi, A.G., Feel, M.A., Abdel-Rahman, E.H. Al-Fattah, A.M. (2015); Antibacterial activity of bee venom collected from Apis mellifera carniolan pure and hybrid races by two collection methods. Int J Curr Microbiol App Sci 4(4): 141-149.
15- Yan, L. and Adams, E. (1998); Lycotoxin, antimicrobial peptid from venom of wolf spider Lycosa carolinensis. J Biol Chem 273: 2059-2064.
16- Leandro, L.F., Mendes, C.A., Casemiro, L.A., Vinholis, A.H., Cunha, W.R., de Almeida, R., et al. (2015); Antimicrobial activity of apitoxin, melittin and phospholipase A₂ of honey bee (Apis mellifera) venom against oral pathogens. An Acad Bras Cienc 87(1): 147-155.
17- Sahayaraj, K., Borgio, J.F., Muthukumar, S. and Anandh, P. (2006); Antibacterial activity of Rhynocoris marginatus and Catamirus brevipennis venoms against human pathogens. J Venom Anim Toxins incl Trop Dis 12: 487-496.
18- Nahed, M.A. and Amany, M.H. (2010); Bee Venom-Lead Acetate Toxicity Interaction. Aust J Basic & Appl Sci 4(8): 2206-2221.
19- Pimentel, R.B., da Costa, C.A., Albuquerque, P.M., Junior, S.D. (2013); Antimicrobial activity and rutin identification of honey produced by the stingless bee Melipona compressipes manaosensis and commercial honey. BMC Complement Altern Med 1(13): 151-158.
20- Al Samie Mohamed Ali, M.A. (2012); Studies on bee venom and its medical uses. International Journal of Advancements in Research & Technology 1(2): 1-15.