Applications of autodisplay system for recombinant protein expression on the bacterial cell surface

Editorial

Author

Razi Serum and Vaccine Institute Karaj, Iran.

Abstract

Protein secretory systems are found in all living organisms including gram negative bacteria, and eukaryotic cell’s organelles that are derived from these bacteria. Unlike all other living organisms, gram negative bacteria have different protein secretory systems. At least there are four different independent secretory systems, which are responsible to transport the secreted proteins to the milieu or insert them into the bacterial cell surface. Comprising these systems in bacteria suggests that, beside the biogenic, mechanistic and evolutionary similarities, each acting independently. To display a protein or peptide with a distinct function at the surface of a living bacterial cell, is a challenging exercise with constantly increasing impact in many areas of biochemistry and biotechnology. Autodisplay system is developed based on autotransporters. This article introduces autodisplay protein expression based on autotransporters, on the bacterial cell surface, and their different potential applications and also in vaccine production.

 
1- Benz, I., and M. A. Schmidt. (1989) Cloning and expression of an adhesion (AIDA-I) involved in diffuse adherence of enteropathogenic Escherichia coli, Infect. Immun. 57, pp:1506–1511.##
2- Bessette, P. H., J. J. Rice, and P. S. Daugherty. (2004) Rapid isolation of high-affinity protein binding peptides using bacterial display, Protein Eng. Des. Sel. 17,pp:731–739.##
3- Bornscheuer, U. T. (2002) Microbial carboxyl esterases: Classification, properties and application in biocatalysis, FEMS Microbiol. Rev, 26,pp:73–81.##
4- Francisco, J. A., C. F. Earhart, and G. Georgiou. (1992) Transport and anchoring of beta-lactamase to the external surface of Escherichia coli, Proc. Natl. Acad. Sci. 89,pp:2713–2717.##
5- Francisco, J. A., R. Campbell, B. L. Iverson, and G. Georgiou. (1993) Production and fluorescence-activated cell sorting of Escherichia coli expressing a functional antibody fragment on the external surface, Proc. Natl. Acad. Sci. 90,pp:10444–10448.##
6- Georgiou, G., C. Stathopoulos, P. S. Daugherty, A. R. Nayak, B. L. Iverson, and R. Curtiss III. (1997) Display of heterologous proteins on the surface of microorganisms: From the screening of combinatorial libraries to live recombinant vaccines, Nat. Biotechnol. 15,pp:29–34.##
7- Giffhorn, F., S. Kopper, A. Huwig, and S. Freimund. (2000) Rare sugars and sugar-based synthons by chemo-enzymatic synthesis, Enzyme Microb. Technol. 27,pp:734–742.##
8- Grinberg, A. V., F. Hannemann, B. Schiffler, J. Muller, U. Heinemann, and R. Bernhardt. (2000) Adrenodoxin: structure, stability, and electron transfer properties, Proteins 40,pp:590–612.##
9- Hess, J., A. Dreher, I. Gentschev, W. Goebel, C. Ladel, D. Miko, and S. H. Kaufmann. (1996) Protein p60 participates in intestinal host invasion by Listeria monocytogenes, Zentbl. Bakteriol. 284,pp:263–272.##
10- Jose, J., F. Jahnig, and T. F. Meyer. (1995) Common structural features of IgA1 protease-like outer membrane protein autotransporters letter, Mol. Microbiol. 18,pp:378–380.##
11- Jose, J., J. Kramer, T. Klauser, J. Pohlner, and T. F. Meyer. (1996) Absence of periplasmic DsbA oxidoreductase facilitates export of cysteine-containing passenger proteins to the Escherichia coli cell surface via the Iga beta autotransporter pathway, Gene, 178,pp:107–110.##
12- Jose, J., F. Hannemann, and R. Bernhardt. (2001) Functional display of active bovine adrenodoxin on the surface of  E. coli by chemical incorporation of the 2Fe-2S cluster, Chembiochem, 2,pp:695–701.##
13- Jose, J., R. Bernhardt, and F. Hannemann. (2002) Cellular surface display of dimeric Adx and whole cell P450-mediated steroid synthesis on E. coli, J. Biotechnol. 95,pp:257–268.##
14- Jose, J. and S. Handel. (2003) Monitoring the cellular surface display of recombinant proteins by cysteine labeling and flow cytometry, Chembiochem, 4,pp:396–405.##
15- Jose, J., and S. von Schwichow. (2004) Autodisplay of active sorbitol dehydrogenase (SDH) yields a whole cell biocatalyst for the synthesis of rare sugars, Chembiochem, 5,pp:100–108.##
16- Jose, J., and D. Zangen. (2005) Autodisplay of the protease inhibitor aprotininin Escherichia coli, Biochem. Biophys. Res. Commun, 333,pp:1218–1226.##
17- Jose J., Meyer, T.F. (2007) The Autodisplay Story, from Discovery to Biotechnical and Biomedical applications, microbiology and molecular biology reviews, Vol. 71, No. 4,pp:600–619##
18- Klauser, T., J. Pohlner, and T. F. Meyer. (1990) Extracellular transport of cholera toxin B subunit using Neisseria IgA protease beta-domain: Conformation-dependent outer membrane translocation, EMBO J, 9,pp:1991–1999.##
19- Klauser, T., J. Pohlner, and T. F. Meyer. (1992) Selective extracellular release of cholera toxin B subunit by Escherichia coli: Dissection of Neisseria Iga beta-mediated outer membrane transport, EMBO J, 11,pp:2327–2335.##
20- Klauser, T., J. Pohlner, and T. F. Meyer. (1993) The secretion pathway of IgA protease-type proteins in gram-negative bacteria, Bioessays, 15,pp:799–805.##
21- Konieczny, M. P., M. Suhr, A. Noll, I. B. Autenrieth, and M. Alexander Schmidt. (2000) Cell surface presentation of recombinant (poly-) peptides including functional T-cell epitopes by the AIDA autotransporter system, FEMS Immunol. Med.
Microbiol, 27,pp:321–332.##
22- Kramer, U., K. Rizos, H. Apfel, I. B. Autenrieth, and C. T. Lattemann. (2003) Autodisplay: Development of an efficacious system for surface display of antigenic determinants in Salmonella vaccine strains, Infect. Immun, 71,pp:1944–1952.##
23- Lattemann, C. T., J. Maurer, E. Gerland, and T. F. Meyer. (2000) Autodisplay: Functional display of active beta-lactamase on the surface of Escherichia coli by the AIDA-I autotransporter, J. Bacteriol, 182,pp:3726–3733.##
24- McBride, J. D., H. N. Freeman, and R. J. Leatherbarrow. (1999) Selection of human elastase inhibitors from a conformationally constrained combinatorial peptide library, Eur. J. Biochem, 266,pp:403–404 12.##
25- Maurer, J., J. Jose, and T. F. Meyer. (1997) Autodisplay: one-component system for efficient surface display and release of soluble recombinant proteins from Escherichia coli, J. Bacteriol, 179,pp:794–804.##
26- Maurer, J., J. Jose, and T. F. Meyer. (1999) Characterization of the essential transport function of the AIDA-I autotransporter and evidence supporting structural predictions, J. Bacteriol, 181,pp:7014–7020.##
27- Pikuleva, I. A., K. Tesh, M. R. Waterman, and Y. Kim. (2000) The tertiary structure of full-length bovine adrenodoxin suggests functional dimers, Arch. Biochem. Biophys, 373,pp:44–55.##
28- Philippsen, A., T. Schirmer, M. A. Stein, F. Giffhorn, and J. Stetefeld. (2005) Structure of zinc-independent sorbitol dehydrogenase from Rhodobacter sphaeroides at 2.4 A resolution, Acta Crystallogr, 61,pp:374–379.##
29- Pohlner, J., R. Halter, K. Beyreuther, and T. F. Meyer. (1987) Gene structure and extracellular secretion of Neisseria gonorrhoeae IgA protease, Nature, 325,pp:458–462.##
30- Pohlner, J., T. Klauser, E. Kuttler, and R. Halter. (1992) Sequence-specific cleavage of protein fusions using a recombinant Neisseria type 2 IgA protease, Biotechnology, 10,pp:799–804.##
31- Reetz, M. T. (2000) Evolution in the test tube as a means to create enantioselective enzymes for use in organic synthesis, Sci. Prog, 83,pp:157–172.##
32- Rizos, K., C. T. Lattemann, D. Bumann, T. F. Meyer, and T. Aebischer. (2003) Autodisplay: Efficacious surface exposure of antigenic UreA fragments from Helicobacter pylori in Salmonella vaccine strains, Infect. Immun,71,pp:6320–6328.##
33- Schmidt, M., M. Baumann, E. Henke, M. Konarzycka-Bessler, and U. T. Bornscheuer. (2004) Directed evolution of lipases and esterases, Methods Enzymol, 388,pp:199–207.##
34- Schultheiss, E., C. Paar, H. Schwab, and J. Jose. (2002) Functional esterase surface display by the autotransporter pathway in Escherichia coli, J. Mol.Catal, 18,pp:89–97.##
35- Smith, G. P. (1985) Filamentous fusion phage: Novel expression vectors thatdisplay cloned antigens on the virion surface, Science, 228,pp:1315–1317.##
36- Strauss, A., and F. Gotz. (1996) invivo immobilization of enzymatically active polypeptides on the cell surface of Staphylococcus carnosus, Mol. Microbiol. 21,pp:491–500.##
37- Wentzel, A., A. Christmann, R. Kratzner, and H. Kolmar. (1999) Sequence requirements of the GPNG beta-turn of the Ecballium elaterium trypsin inhibitor II explored by combinatorial library screening, J. Biol. Chem,274,pp:21037–21043.##
38- Wernerus, H., and S. Stahl. (2004) Biotechnological applications for surface engineered bacteria, Biotechnol, Appl. Biochem, 40,pp:209–228.##